diff options
Diffstat (limited to '1328/CH15/EX15.3')
-rw-r--r-- | 1328/CH15/EX15.3/15_3.sce | 73 |
1 files changed, 73 insertions, 0 deletions
diff --git a/1328/CH15/EX15.3/15_3.sce b/1328/CH15/EX15.3/15_3.sce new file mode 100644 index 000000000..0e4711306 --- /dev/null +++ b/1328/CH15/EX15.3/15_3.sce @@ -0,0 +1,73 @@ +printf("\t example 15.3 \n");
+printf("\t approximate values are mentioned in the book \n");
+ts=400;
+T1=575;
+T2=475;
+W=28100; // lb/hr
+w=34700; // lb/hr
+printf("\t 1.for heat balance \n");
+HT1=290; // enthalpy at T1, Btu/lb, fig 11
+HT2=385; // enthalpy at T2, Btu/lb, fig 11
+Q=(W*(HT2-HT1)); // for preheat
+printf("\t total heat required for gasoline is : %.2e Btu/hr \n",Q);
+c=0.77; // Btu/(lb), table 7
+Q=((w)*(c)*(T1-T2)); // Btu/hr
+printf("\t total heat required for gasoil is : %.2e Btu/hr \n",Q);
+delt=118; // F eq 5.14
+S=((T2-ts)/(T1-ts));
+printf("\t S is : %.3f \n",S);
+Kc=0.37; // fig 17
+Fc=0.42;
+Tc=(T2+(0.42*(T1-T2)));
+printf("\t Tc is : %.0f F \n",Tc);
+printf("\t hot fluid:inner tube side,gasoil \n");
+Nt=68;
+n=6; // number of passes
+L=12; //ft
+at1=0.546; // flow area,table 10, in^2
+at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
+printf("\t flow area is : %.3f ft^2 \n",at);
+Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt);
+mu1=0.65; // at 517F, fig 14,lb/(ft)*(hr)
+D=0.0694; // ft
+Ret=((D)*(Gt)/mu1); // reynolds number
+printf("\t reynolds number is : %.2e \n",Ret);
+jH=220; // from fig.24
+Z=0.118; // Z=k*((c)*(mu1)/k)^(1/3), fig 16
+Hi=((jH)*(1/D)*(Z)); //hi/phyt, Hi=()using eq.6.15d,Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Hi);
+Hio=((Hi)*(0.834/1)); //Hio=(hio/phyp), using eq.6.9
+printf("\t Correct Hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",Hio);
+// (mu1/muw)^(0.14) is negligible
+printf("\t cold fluid:shell side,gasoline \n");
+ho=300; // assumption
+tw=(ts)+(((Hio)/(Hio+ho))*(Tc-ts)); // from eq.5.31
+printf("\t tw is : %.0f F \n",tw);
+deltw=(tw-ts);
+printf("\t deltw : %.0f F \n",deltw);
+// from fig 15.11, ho>300
+Uc=((Hio)*(ho)/(Hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc);
+A2=0.2618; // actual surface supplied for each tube,ft^2,from table 10
+A=(Nt*L*A2); // ft^2
+printf("\t total surface area is : %.0f ft^2 \n",A);
+UD=((Q)/((A)*(delt)));
+printf("\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
+// check for max. flux=Q/A=12500.(satisfactory)
+Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd);
+printf("\t pressure drop for inner pipe \n");
+f=0.00015; // friction factor for reynolds number 85700, using fig.26
+s=0.71;
+phyt=1;
+delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi
+printf("\t delPt is : %.1f psi \n",delPt);
+X1=0.09; // X1=((V^2)/(2*g)), for Gt 1060000,using fig.27
+delPr=((4*n*X1)/(s)); // using eq.7.46,psi
+printf("\t delPr is : %.1f psi \n",delPr);
+delPT=delPt+delPr; // using eq.7.47,psi
+printf("\t delPT is : %.1f psi \n",delPT);
+printf("\t allowable delPa is 10psi \n");
+printf("\t delPs is negligible \n");
+//end
|