summaryrefslogtreecommitdiff
path: root/1328/CH11/EX11.1/11_1.sce
diff options
context:
space:
mode:
Diffstat (limited to '1328/CH11/EX11.1/11_1.sce')
-rw-r--r--1328/CH11/EX11.1/11_1.sce125
1 files changed, 125 insertions, 0 deletions
diff --git a/1328/CH11/EX11.1/11_1.sce b/1328/CH11/EX11.1/11_1.sce
new file mode 100644
index 000000000..b4f325cc0
--- /dev/null
+++ b/1328/CH11/EX11.1/11_1.sce
@@ -0,0 +1,125 @@
+printf("\t example 11.1 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=340; // inlet hot fluid,F
+T2=240; // outlet hot fluid,F
+t1=200; // inlet cold fluid,F
+t2=230; // outlet cold fluid,F
+W=29800; // lb/hr
+w=103000; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for straw oil \n");
+c=0.58; // Btu/(lb)*(F)
+Q=((W)*(c)*(T1-T2)); // Btu/hr
+printf("\t total heat required for straw oil is : %.2e Btu/hr \n",Q);
+printf("\t for naphtha \n");
+c=0.56; // Btu/(lb)*(F)
+Q=((w)*(c)*(t2-t1)); // Btu/hr
+printf("\t total heat required for naphtha is : %.2e Btu/hr \n",Q);
+delt1=T2-t1; //F
+delt2=T1-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.1f F \n",LMTD);
+R=((T1-T2)/(t2-t1));
+printf("\t R is : %.1f \n",R);
+S=((t2-t1)/(T1-t1));
+printf("\t S is : %.3f \n",S);
+printf("\t FT is 0.885 \n"); // from fig 18
+delt=(0.885*LMTD); // F
+printf("\t delt is : %.1f F \n",delt);
+X=((delt1)/(delt2));
+printf("\t ratio of two local temperature difference is : %.3f \n",X);
+L=16;
+Fc=0.405; // from fig.17
+Kc=0.23; // crude oil controlling
+Tc=((T2)+((Fc)*(T1-T2))); // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.1f F \n",Tc);
+tc=((t1)+((Fc)*(t2-t1))); // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.0f F \n",tc);
+UD1=70; // assume, from table 8a
+A1=((Q)/((UD1)*(delt)));
+printf("\t A1 is : %.0f ft^2 \n",A1);
+a1=0.1963; // ft^2/lin ft
+N1=(A1/(16*a1));
+printf("\t number of tubes are : %.0f \n",N1);
+N2=124; // assuming two tube passes, from table 9
+A2=(N2*L*a1); // ft^2
+printf("\t total surface area is : %.1e ft^2 \n",A2);
+UD=((Q)/((A2)*(delt)));
+printf("\t correct design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
+printf("\t hot fluid:shell side,straw oil \n");
+ID=15.25; // in
+C=0.25; // clearance
+B=3.5; // minimum baffle spacing,from eq 11.4,in
+PT=1;
+as=((ID*C*B)/(144*PT)); // flow area,from eq 7.1,ft^2
+printf("\t flow area is : %.4f ft^2 \n",as);
+Gs=(W/as); // mass velocity,from eq 7.2,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs);
+mu1=3.63; // at 280.5F,lb/(ft)*(hr), from fig.14
+De=0.95/12; // from fig.28,ft
+Res=((De)*(Gs)/mu1); // reynolds number
+printf("\t reynolds number is : %.0e \n",Res);
+jH=46; // from fig.28
+Z=0.224; // Z=(K*(c*mu3/k)^(1/3)),Btu/(hr)(ft^2)(F/ft), at mu3=1.5cp and 35 API
+Ho=((jH)*(1/De)*(Z)); // H0=(h0/phya),using eq.6.15,Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Ho);
+phys=1;
+ho=(Ho)*(phys); // from eq.6.36
+printf("\t Correct h0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+printf("\t cold fluid:inner tube side,naphtha \n");
+Nt=124;
+n=2; // number of passes
+L=16; //ft
+at1=0.302; // flow area, in^2
+at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
+printf("\t flow area is : %.3f ft^2 \n",at);
+Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt);
+mu2=1.31; // at 212F,lb/(ft)*(hr)
+D=0.0517; // ft
+Ret=((D)*(Gt)/mu2); // reynolds number
+printf("\t reynolds number is : %.2e \n",Ret);
+jH=102; // from fig.24
+Z=0.167; // Z=(K*(c*mu3/k)^(1/3)),Btu/(hr)(ft^2)(F/ft), at mu4=0.54cp and 48 API
+Hi=((jH)*(1/D)*(Z)); //Hi=(hi/phyp),using eq.6.15a,Btu/(hr)*(ft^2)*(F)
+printf("\t Hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",Hi);
+ID=0.62; // ft
+OD=0.75; //ft
+Hio=((Hi)*(ID/OD)); //Hio=(hio/phyp), using eq.6.5
+printf("\t Correct Hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",Hio);
+phyt=1;
+hio=(Hio)*(phyt); // from eq.6.37
+printf("\t Correct hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio);
+printf("\t pressure drop for annulus \n");
+f=0.00225; // friction factor for reynolds number 7000, using fig.29
+s=0.76; // for reynolds number 7000,using fig.6
+Ds=15.25/12; // ft
+N=(12*L/B); // number of crosses,using eq.7.43
+printf("\t number of crosses are : %.0f \n",N);
+delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys))); // using eq.7.44,psi
+printf("\t delPs is : %.1f psi \n",delPs);
+printf("\t pressure drop for inner pipe \n");
+f=0.0002; // friction factor for reynolds number 31300, using fig.26
+s=0.72;
+delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi
+printf("\t delPt is : %.1f psi \n",delPt);
+Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc);
+Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd);
+printf("\t The first trial is disqualified because of failure to meet the required dirt factor \n");
+printf("\t Proceeding as above and carrying the viscosity correction and pressure drops to completion the new summary is given using a 17.25in. ID shell with 166 tubes on two passes and a 3.5in. baffle space \n");
+UD1=60; // assumption for 2 tube passes,3.5 baffle spacing and 17.25in ID
+UC1=74.8;
+printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UC1);
+UD2=54.2;
+printf("\t correct design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD2);
+Rd1=0.005;
+printf("\t actual Rd is : %.3f (hr)*(ft^2)*(F)/Btu \n",Rd1);
+delPs1=4.7;
+printf("\t delPs is : %.1f psi \n",delPs1);
+delPt1=2.1;
+printf("\t delPt is : %.1f psi \n",delPt1);
+//end