summaryrefslogtreecommitdiff
path: root/1328/CH10/EX10.2/10_2.sce
diff options
context:
space:
mode:
Diffstat (limited to '1328/CH10/EX10.2/10_2.sce')
-rw-r--r--1328/CH10/EX10.2/10_2.sce88
1 files changed, 88 insertions, 0 deletions
diff --git a/1328/CH10/EX10.2/10_2.sce b/1328/CH10/EX10.2/10_2.sce
new file mode 100644
index 000000000..21a235c4b
--- /dev/null
+++ b/1328/CH10/EX10.2/10_2.sce
@@ -0,0 +1,88 @@
+printf("\t example 10.2 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=250; // inlet hot fluid,F
+T2=250; // outlet hot fluid,F
+t1=95; // inlet cold fluid,F
+t2=145; // outlet cold fluid,F
+W=16000; // lb/hr
+w=423; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for kerosene \n");
+c=0.5; // Btu/(lb)*(F)
+Q=((W)*(c)*(t2-t1)); // Btu/hr
+printf("\t total heat required for kerosene is : %.0f Btu/hr \n",Q);
+printf("\t for steam \n");
+l=945.5; // Btu/(lb)
+Q=((w)*(l)); // Btu/hr
+printf("\t total heat required for steam is : %.2e Btu/hr \n",Q);
+delt1=T2-t1; //F
+delt2=T1-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.0f F \n",LMTD);
+tc=((t1)+(t2))/2; // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.0f F \n",tc);
+printf("\t hot fluid:shell side,steam \n");
+ho=(1500); // condensation of steam Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+printf("\t cold fluid:inner tube side,kerosene \n");
+Nt=86;
+n=2; // number of passes
+L=12; //ft
+at1=0.594; // flow area, in^2,from table 10
+at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
+printf("\t flow area is : %.3f ft^2 \n",at);
+Gt=(W/(.177)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt);
+mu2=1.36*2.42; // at 145F,lb/(ft)*(hr)
+D=(0.87/12); // ft
+Ret1=((D)*(Gt)/mu2); // reynolds number
+printf("\t reynolds number is : %.0f \n",Ret1);
+mu3=1.75*2.42; // at 120F,lb/(ft)*(hr)
+D=(0.87/12); // ft
+Ret2=((D)*(Gt)/mu3); // reynolds number
+printf("\t reynolds number is : %.1e \n",Ret2);
+Z1=331; // Z1=(L*n/D)
+jH=3.1; // from fig 24
+mu4=1.75; // cp and 40 API
+Z2=0.24; // Z2=((k)*(c*mu4/k)^(1/3)), from fig 16
+Hi=((jH)*(1/D)*(Z2)); // using eq.6.15a,Btu/(hr)*(ft^2)*(F)
+printf("\t Hi is : %.2f Btu/(hr)*(ft^2)*(F) \n",Hi);
+ID=0.87; // ft
+OD=1; //ft
+Hio=(Hi*(ID/OD)); //Btu/(hr)*(ft^2)*(F), from eq.6.5
+printf("\t Hio is : %.2f Btu/(hr)*(ft^2)*(F) \n",Hio);
+tw=(tc)+(((ho)/(Hio+ho))*(T1-tc)); // from eq.5.31
+printf("\t tw is : %.0f F \n",tw);
+muw=1.45; // lb/(ft)*(hr),at 249F from fig.14
+phyt=(mu3/muw)^0.14;
+printf("\t phyt is : %.1f \n",phyt); // from fig.24
+hio=(Hio)*(phyt); // from eq.6.37
+printf("\t Correct hio to the surface at the OD is : %.1f Btu/(hr)*(ft^2)*(F) \n",hio);
+delt=tw-tc; //F
+printf("\t delt is : %.0f F \n",delt);
+printf("\t Since the kerosene has a viscosity of only 1.75 cp at the caloric temperature and delt=129F, free convection should be investigated. \n");
+s=0.8;
+row=50; // lb/ft^3, from fig 6
+s1=0.810; // at 95F
+s2=0.792; // at 145F
+bita=((s1^2-s2^2)/(2*(t2-t1)*s1*s2)); // /F
+printf("\t beta is : %.6f /F \n",bita);
+G=((D^3)*(row^2)*(bita)*(delt)*(4.18*10^8)/(mu3^2));
+printf("\t G is : %.1e \n",G);
+psy=((2.25)*(1+(0.01*G^(1/3)))/(log10(Ret2)));
+printf("\t psy is : %.2f \n",psy);
+hio1=(hio*psy);
+printf("\t corrected hio1 is : %.1f Btu/(hr)*(ft^2)*(F) \n",hio1);
+Uc=((hio1)*(ho)/(hio1+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc);
+A2=0.2618; // actual surface supplied for each tube,ft^2,from table 10
+A=(Nt*L*A2); // ft^2
+printf("\t total surface area is : %.0f ft^2 \n",A);
+UD=((Q)/((A)*(delt)));
+printf("\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
+Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.2f (hr)*(ft^2)*(F)/Btu \n",Rd);
+// end
+