diff options
Diffstat (limited to '1309/CH7/EX7.5')
-rwxr-xr-x | 1309/CH7/EX7.5/Result7_5.pdf | bin | 0 -> 92060 bytes | |||
-rwxr-xr-x | 1309/CH7/EX7.5/ch7_5.sce | 25 |
2 files changed, 25 insertions, 0 deletions
diff --git a/1309/CH7/EX7.5/Result7_5.pdf b/1309/CH7/EX7.5/Result7_5.pdf Binary files differnew file mode 100755 index 000000000..bcb325e28 --- /dev/null +++ b/1309/CH7/EX7.5/Result7_5.pdf diff --git a/1309/CH7/EX7.5/ch7_5.sce b/1309/CH7/EX7.5/ch7_5.sce new file mode 100755 index 000000000..1b68cdd89 --- /dev/null +++ b/1309/CH7/EX7.5/ch7_5.sce @@ -0,0 +1,25 @@ +clc; +clear; +printf("\t\t\tChapter7_example5\n\n\n"); +// validation of the equation st.(Pr)^(2/3)=Cd/2 where St: Stanton Number Pr:Prandtl Number Cd: Drag Coefficient +// values of parameters from example 7.4 +rou= 0.0812; // density in Ibm/ft^3 +cp=0.2918; // specific heat BTU/(lbm-degree Rankine) +v= 17.07e-5; // viscosity in ft^2/s +kf = 0.01546 ; // thermal conductivity in BTU/(hr.ft.degree Rankine) +a = 0.8862; // diffusivity in ft^2/hr +Pr = 0.709; // Prandtl Number +Tw=469; // maximum heater temperature in degree Rankine +T_inf=300; // free-stream temperature in degree Rankine +qw=324; // The wall flux in BTU/(hr.ft^2) +V_inf=20; // velocity in ft/s +hx=qw/(Tw-T_inf); // The convection coefficient +printf("\nThe convection coefficient is %.2f BTU/(hr.sq.ft.degree R)",hx); +LHS=(hx/3600)*(Pr)^(2/3)/(rou*cp*V_inf); +printf("\nThe value of left hand side of the equation is %.2e",LHS); +Re_L=1.46e+005; // Reynolds number at plate end +RHS=0.332*(Re_L)^(-0.5); +printf("\nThe value of left hand side of the equation is %.2e",RHS); +err=(LHS-RHS)*100/LHS; +printf("\nThe error is %d percent",err); +printf("\nSince the error is only %d percent, the agreement is quite good",err); |