diff options
Diffstat (limited to '1309/CH7/EX7.4/ch7_4.sce')
-rwxr-xr-x | 1309/CH7/EX7.4/ch7_4.sce | 21 |
1 files changed, 21 insertions, 0 deletions
diff --git a/1309/CH7/EX7.4/ch7_4.sce b/1309/CH7/EX7.4/ch7_4.sce new file mode 100755 index 000000000..62f2e98f5 --- /dev/null +++ b/1309/CH7/EX7.4/ch7_4.sce @@ -0,0 +1,21 @@ +clc; +clear; +printf("\t\t\tChapter7_example4\n\n\n"); +// Determination of the maximum heater-surface temperature for given conditions +// fluid properties at (300 degree R + 800 degree R)/2 = 550 degree R=540degree R from Appendix Table D.6 +rou= 0.0812; // density in Ibm/ft^3 +cp=0.2918; // specific heat BTU/(lbm-degree Rankine) +v= 17.07e-5; // viscosity in ft^2/s +kf = 0.01546 ; // thermal conductivity in BTU/(hr.ft.degree Rankine) +a = 0.8862; // diffusivity in ft^2/hr +Pr = 0.709; // Prandtl Number +qw=10/(1.5*10.125)*(1/.2918)*144; // The wall flux +printf("\nThe wall flux is %d BTU/(hr. sq.ft)",qw); +V_inf=20; // velocity in ft/s +L=1.5/12; // length in ft +Re_L=V_inf*10*L/v; // Reynolds number at plate end +printf("\nThe Reynolds number at plate end is %.2e",Re_L); +// So the flow is laminar and we can find the wall temperature at plate end as follows +T_inf=300; // free stream temperature in degree Rankine +Tw=T_inf+(qw*L*10/(kf*0.453*(Re_L)^0.5*(Pr)^(1/3))); +printf("\nThe maximum heater surface temperature is %d degree Rankine",Tw); |