summaryrefslogtreecommitdiff
path: root/1309/CH7/EX7.4/ch7_4.sce
diff options
context:
space:
mode:
Diffstat (limited to '1309/CH7/EX7.4/ch7_4.sce')
-rwxr-xr-x1309/CH7/EX7.4/ch7_4.sce21
1 files changed, 21 insertions, 0 deletions
diff --git a/1309/CH7/EX7.4/ch7_4.sce b/1309/CH7/EX7.4/ch7_4.sce
new file mode 100755
index 000000000..62f2e98f5
--- /dev/null
+++ b/1309/CH7/EX7.4/ch7_4.sce
@@ -0,0 +1,21 @@
+clc;
+clear;
+printf("\t\t\tChapter7_example4\n\n\n");
+// Determination of the maximum heater-surface temperature for given conditions
+// fluid properties at (300 degree R + 800 degree R)/2 = 550 degree R=540degree R from Appendix Table D.6
+rou= 0.0812; // density in Ibm/ft^3
+cp=0.2918; // specific heat BTU/(lbm-degree Rankine)
+v= 17.07e-5; // viscosity in ft^2/s
+kf = 0.01546 ; // thermal conductivity in BTU/(hr.ft.degree Rankine)
+a = 0.8862; // diffusivity in ft^2/hr
+Pr = 0.709; // Prandtl Number
+qw=10/(1.5*10.125)*(1/.2918)*144; // The wall flux
+printf("\nThe wall flux is %d BTU/(hr. sq.ft)",qw);
+V_inf=20; // velocity in ft/s
+L=1.5/12; // length in ft
+Re_L=V_inf*10*L/v; // Reynolds number at plate end
+printf("\nThe Reynolds number at plate end is %.2e",Re_L);
+// So the flow is laminar and we can find the wall temperature at plate end as follows
+T_inf=300; // free stream temperature in degree Rankine
+Tw=T_inf+(qw*L*10/(kf*0.453*(Re_L)^0.5*(Pr)^(1/3)));
+printf("\nThe maximum heater surface temperature is %d degree Rankine",Tw);