summaryrefslogtreecommitdiff
path: root/1309/CH2/EX2.10/ch2_10.sce
diff options
context:
space:
mode:
Diffstat (limited to '1309/CH2/EX2.10/ch2_10.sce')
-rwxr-xr-x1309/CH2/EX2.10/ch2_10.sce25
1 files changed, 25 insertions, 0 deletions
diff --git a/1309/CH2/EX2.10/ch2_10.sce b/1309/CH2/EX2.10/ch2_10.sce
new file mode 100755
index 000000000..390cc3c5e
--- /dev/null
+++ b/1309/CH2/EX2.10/ch2_10.sce
@@ -0,0 +1,25 @@
+clc;
+clear;
+printf("\t\t\tChapter2_example10\n\n\n");
+// determination of optimum fin length and heat transferred by fin
+k=8.32; // thermal conductivity of Type 304 stainless steel in BTU/(hr.ft.degree Rankine)from appendix table B2
+hc=400; // the convective heat transfer coefficient given in BTU/(hr.ft^2. degree Rankine)
+printf("\n\t\t\tSolution to part (a)\n");
+delta_opt=0.55/(12*2);
+// determination of dimension of one fin using the equation delta_opt=0.583*hc*Lc^2/k
+Lc=sqrt(delta_opt*k/(0.583*hc));
+printf("\nThe optimum length is %.3f in",Lc*12);
+printf("\n\n\t\t\tSolution to part (b)\n");
+A=Lc*delta_opt;
+// determination of parameter for finding out efficiency from graph
+parameter=Lc^1.5*sqrt(hc/(k*A));
+printf("\nThe parameter value for finding the efficiency is: %.2f",parameter);
+efficiency=0.6;
+printf("\nThe efficiency found from the graph in figure 2.36 is %.1f", efficiency);
+W=1/(2*12);// width in ft
+T_w=190; // wall temperature in degree fahrenheit
+T_inf=58; // ambient temperature in degree fahrenheit
+L=1; // length in ft
+delta=W/2;
+q_ac=efficiency*hc*2*W*sqrt(L^2+delta^2)*(T_w-T_inf);
+printf("\nThe actual heat transferred is %d BTU/hr",q_ac);