diff options
Diffstat (limited to '1309/CH10/EX10.3/ch10_3.sce')
-rwxr-xr-x | 1309/CH10/EX10.3/ch10_3.sce | 32 |
1 files changed, 32 insertions, 0 deletions
diff --git a/1309/CH10/EX10.3/ch10_3.sce b/1309/CH10/EX10.3/ch10_3.sce new file mode 100755 index 000000000..5a02cdc7d --- /dev/null +++ b/1309/CH10/EX10.3/ch10_3.sce @@ -0,0 +1,32 @@ +clc; +clear; +printf("\t\t\tChapter10_example3\n\n\n"); +// Calculation of (a) the power input to the water for boiling to occur, (b) the evaporation rate of water, and (c) the critical heat flux. +// properties of water at 100°C = 373 K from appendix table 10.3 +rou_f=958; // density in kg/m^3 +cp_f= 4217; // specific heat in J/(kg*K) +v_f= 2.91e-7; // viscosity in m^2/s +Pr_f =1.76; // Prandtl Number +rou_g=0.596; +sigma=0.0589; // surface tension in N/m +hfg=2257000; +Tw=120 +Tg=100; +D=.141; // diameter of pan in m +g=9.81; +gc=1; +// nucleate boiling regime +Cw=0.0132; // formechanically polished stainless steel from table 10.2 +q_A=(rou_f*v_f*hfg)*[(g*rou_f*(1-(rou_g/rou_f)))/(sigma*gc)]^(1/2)*[(cp_f*(Tw-Tg))/(Cw*hfg*Pr_f^1.7)]^3; +printf("\nThe heat transferred per unit area is %.2e W/sq.m",q_A); +A=%pi*D^2/4; +printf("\nThe area of the pan inside-bottom surface in contact with liquid is %.2e sq.m",A); +printf("\n\n\t\t\tSolution to part (a)"); +q=q_A*A; // power delivered to the water in W +printf("\nThe power delivered to the water is %.2f kW",q/1000); +printf("\n\n\t\t\tSolution to part (b)"); +mf=q/hfg; // water evaporation rate +printf("\nThe water evaporation rate is %.2e kg/s = %.2f kg/hr",mf,mf*3600); +printf("\n\n\t\t\tSolution to part (c)"); +q_cr=0.18*hfg*[sigma*g*gc*rou_f*rou_g^2]^(1/4); +printf("\nThe critical heat flux is %.2e W/sq.m",q_cr); |