summaryrefslogtreecommitdiff
path: root/1309/CH10/EX10.3/ch10_3.sce
diff options
context:
space:
mode:
Diffstat (limited to '1309/CH10/EX10.3/ch10_3.sce')
-rwxr-xr-x1309/CH10/EX10.3/ch10_3.sce32
1 files changed, 32 insertions, 0 deletions
diff --git a/1309/CH10/EX10.3/ch10_3.sce b/1309/CH10/EX10.3/ch10_3.sce
new file mode 100755
index 000000000..5a02cdc7d
--- /dev/null
+++ b/1309/CH10/EX10.3/ch10_3.sce
@@ -0,0 +1,32 @@
+clc;
+clear;
+printf("\t\t\tChapter10_example3\n\n\n");
+// Calculation of (a) the power input to the water for boiling to occur, (b) the evaporation rate of water, and (c) the critical heat flux.
+// properties of water at 100°C = 373 K from appendix table 10.3
+rou_f=958; // density in kg/m^3
+cp_f= 4217; // specific heat in J/(kg*K)
+v_f= 2.91e-7; // viscosity in m^2/s
+Pr_f =1.76; // Prandtl Number
+rou_g=0.596;
+sigma=0.0589; // surface tension in N/m
+hfg=2257000;
+Tw=120
+Tg=100;
+D=.141; // diameter of pan in m
+g=9.81;
+gc=1;
+// nucleate boiling regime
+Cw=0.0132; // formechanically polished stainless steel from table 10.2
+q_A=(rou_f*v_f*hfg)*[(g*rou_f*(1-(rou_g/rou_f)))/(sigma*gc)]^(1/2)*[(cp_f*(Tw-Tg))/(Cw*hfg*Pr_f^1.7)]^3;
+printf("\nThe heat transferred per unit area is %.2e W/sq.m",q_A);
+A=%pi*D^2/4;
+printf("\nThe area of the pan inside-bottom surface in contact with liquid is %.2e sq.m",A);
+printf("\n\n\t\t\tSolution to part (a)");
+q=q_A*A; // power delivered to the water in W
+printf("\nThe power delivered to the water is %.2f kW",q/1000);
+printf("\n\n\t\t\tSolution to part (b)");
+mf=q/hfg; // water evaporation rate
+printf("\nThe water evaporation rate is %.2e kg/s = %.2f kg/hr",mf,mf*3600);
+printf("\n\n\t\t\tSolution to part (c)");
+q_cr=0.18*hfg*[sigma*g*gc*rou_f*rou_g^2]^(1/4);
+printf("\nThe critical heat flux is %.2e W/sq.m",q_cr);