diff options
Diffstat (limited to '1223/CH8')
-rwxr-xr-x | 1223/CH8/EX8.11/Ex8_11.sce | 38 | ||||
-rwxr-xr-x | 1223/CH8/EX8.2/Ex8_2.sce | 17 | ||||
-rwxr-xr-x | 1223/CH8/EX8.3/Ex8_3.sce | 13 | ||||
-rwxr-xr-x | 1223/CH8/EX8.7/Ex8_7.sce | 21 | ||||
-rwxr-xr-x | 1223/CH8/EX8.8/Ex8_8.sce | 27 | ||||
-rwxr-xr-x | 1223/CH8/EX8.9/Ex8_9.sce | 38 |
6 files changed, 154 insertions, 0 deletions
diff --git a/1223/CH8/EX8.11/Ex8_11.sce b/1223/CH8/EX8.11/Ex8_11.sce new file mode 100755 index 000000000..6d6b2a2b9 --- /dev/null +++ b/1223/CH8/EX8.11/Ex8_11.sce @@ -0,0 +1,38 @@ +clear;
+clc;
+//Example 8.11
+R1=2;//KOhm
+R2=R1;
+Rl=.1;//KOhm
+b=60;
+Vbe=0.6;
+Veb=0.6;
+V1=15;
+V2=V1;
+iR1=(V1-Vbe)/R1;
+//iR1=iR2=iE1=iE2
+printf('\niR1=%.2f mA\n',iR1)
+vo=10;
+io=vo/Rl;
+printf('\noutput current=%.3f mA\n',io)
+iB3=100/61;
+printf('\niB3=%.3fmA\n',iB3)
+iR1=(V1-(10+Vbe))/R1;
+printf('\ncurrent in R1=%.3f mA\n',iR1)
+iE1=iR1-iB3;
+printf('\niE1=%.3f mA\n',iE1)
+iB1=iE1/(1+b);
+iB1=iB1*1000;//micro A
+printf('\niB1=%.3f microA\n',iB1)
+iE2=(10-0.6+15)/R1;
+printf('\niE2=%.3f mA\n',iE2)
+iB2=iE2/(1+b);
+iB2=iB2*1000;
+printf('\niB2=%.3f microA\n',iB2)
+Ii=iB2-iB1;
+printf('\ninput current=%.3f microA\n',Ii)
+Ii=Ii*0.001;//mA
+Ai=io/Ii;
+printf('\ncurrent gain=%.2f\n',Ai)
+Ai=(1+b)*R1/(2*Rl);
+printf('\npredicted current gain=%.2f\n',Ai)
diff --git a/1223/CH8/EX8.2/Ex8_2.sce b/1223/CH8/EX8.2/Ex8_2.sce new file mode 100755 index 000000000..ceca6c52f --- /dev/null +++ b/1223/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,17 @@ +clear;
+clc;
+//Example 8.1
+//let thermal resistance parameters be R
+Rdcase=1.75;//degree celsius per watt
+Rcsnk=1;//degree celsius per watt
+Rsamb=5;//degree celsius per watt
+Rcamb=50;//degree celsius per watt
+Tamb=30;//ambient temperature
+Tjmax=150;//maximum junction temperature
+Tdev=150;//device temperature
+//when no heat sink is used
+P=(Tjmax-Tamb)/(Rdcase+Rcamb);
+printf('\nmaximum power dissipation=%.2f W\n',P)
+//when heat sink is used
+P=(Tjmax-Tamb)/(Rdcase+Rcsnk+Rsamb);
+printf('\nmaximum power dissipation=%.2f W\n',P)
diff --git a/1223/CH8/EX8.3/Ex8_3.sce b/1223/CH8/EX8.3/Ex8_3.sce new file mode 100755 index 000000000..c0eecce6a --- /dev/null +++ b/1223/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,13 @@ +clear;
+clc;
+//Example 8.3
+Rcsnk=1;//degree celsius per watt
+Rsamb=5;//degree celsius per watt
+Tjmax=175;//maximum junction temperature
+Toc=25;
+Tamb=25;
+Pr=20;//rated power W
+Rdcase=(Tjmax-Toc)/Pr;
+printf('\ndevice to case thermal resistance=%.2f °C/W\n',Rdcase)
+P=(Tjmax-Tamb)/(Rdcase+Rcsnk+Rsamb);
+printf('\nmaximum power dissipation=%.2f W\n',P)
diff --git a/1223/CH8/EX8.7/Ex8_7.sce b/1223/CH8/EX8.7/Ex8_7.sce new file mode 100755 index 000000000..1a1b986e0 --- /dev/null +++ b/1223/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,21 @@ +clear;
+clc;
+//Example 8.7
+Vdd=10;
+Rl=20;
+K=0.2;
+Vt=1;
+vo=5;
+iL=vo/20;
+printf('\niL=%.2f A\n',iL)
+Idq=0.05;
+//Idq=K*(Vbb/2-Vt)
+Vbb=(sqrt(Idq/K)+1)*2;
+printf('\nVbb=%.2f V\n',Vbb)
+iD=iL;
+Vgsn=sqrt(iD/K)+Vt;
+printf('\nVgsn=%.2f V\n',Vgsn)
+Vsgp=Vbb-Vgsn;
+printf('\nVsgp=%.2f V\n',Vsgp)
+vi=vo+Vgsn-Vbb/2;
+printf('\ninput voltage=%.2f V\n',vi)
diff --git a/1223/CH8/EX8.8/Ex8_8.sce b/1223/CH8/EX8.8/Ex8_8.sce new file mode 100755 index 000000000..b87412fea --- /dev/null +++ b/1223/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,27 @@ +clear;
+clc;
+//Example 8.8
+Vcc=24;
+Rl=8;
+P=5;
+Vbe=0.7;
+b=100;
+Vp=sqrt(2*Rl*P);
+printf('\npeak output voltage=%.2f V\n',Vp)
+Ip=Vp/Rl;
+printf('\npeak output current =%.2fA\n',Ip)
+a=0.9*Vcc/Vp;
+printf('\na=%.2f\n',a)
+Icq=Ip/(0.9*a);
+printf('\nIcq=%.3f A\n',Icq)
+Pq=Vcc*Icq;
+printf('\nmaximum power dissipated in the transistor=%.2f W\n',Pq)
+Ibq=Icq/b;
+Ibq=Ibq*1000;//mA
+printf('\nbase current Ibq=%.2f mA\n',Ibq)
+Rth=2.500;
+//Vth=Vcc*Rth/R1 and Vth=Ibq*Rth+Vbe
+R1=Vcc*Rth/(Ibq*Rth+Vbe);
+printf('\nR1=%.2f KOhm\n',R1)
+R2=Rth*R1/(R1-Rth);
+printf('\nR2=%.2f KOhm\n',R2)
diff --git a/1223/CH8/EX8.9/Ex8_9.sce b/1223/CH8/EX8.9/Ex8_9.sce new file mode 100755 index 000000000..f202b7fa0 --- /dev/null +++ b/1223/CH8/EX8.9/Ex8_9.sce @@ -0,0 +1,38 @@ +clear;
+clc;
+//Example 8.9
+Iso=3*10^-14;
+Isq=10^-13;
+b=75;
+Vt=0.026;
+Rl=8;
+P=5;
+Vp=sqrt(2*Rl*P);
+printf('\npeak voltage Vp=%.2f V\n',Vp)
+Vcc=Vp/0.8;
+printf('\nsupply voltage=%.2f V\n',Vcc)
+Ien=Vp/Rl;
+printf('\nemitter current=%.3f A\n',Ien)
+Ibn=Ien/(1+b);
+Ibn=Ibn*1000;//mA
+printf('\nbase current=%.2f mA\n',Ibn)
+iD=0.020;
+Vbb=2*Vt*log(iD/Iso);
+printf('\nVbb=%.2f V\n',Vbb)
+Icq=Isq*exp((Vbb/2)/Vt);
+Icq=Icq*1000;//mA
+printf('\nquiescent collector current=%.3f mA\n',Icq)
+Ibias=20;//mA
+iD=Ibias-Ibn;
+printf('\ndrain current=%.3f mA\n',iD)
+iD=iD*0.001;//A
+Vbb=2*Vt*log(iD/Iso);
+printf('\nVbb=%.2f V\n',Vbb)
+Icn=1.12;
+Vben=Vt*log(Icn/Isq);
+printf('\nB-E voltage of Qn=%.2f V\n',Vben)
+Vebp=Vbb-Vben;
+printf('\nemitter base voltage of Qp=%.2f V\n',Vebp)
+Icp=Isq*exp(Vebp/Vt);
+Icp=Icp*1000;//mA
+printf('\nIcp=%f mA\n',Icp)
|