diff options
Diffstat (limited to '1202/CH22/EX22.2/22_2.sce')
-rwxr-xr-x | 1202/CH22/EX22.2/22_2.sce | 215 |
1 files changed, 215 insertions, 0 deletions
diff --git a/1202/CH22/EX22.2/22_2.sce b/1202/CH22/EX22.2/22_2.sce new file mode 100755 index 000000000..42c9073e3 --- /dev/null +++ b/1202/CH22/EX22.2/22_2.sce @@ -0,0 +1,215 @@ +clear +clc + +//Example 22.2 +disp('Example 22.2') +//Author: Dhruv Gupta....Aug 4, 2013 +//<dgupta6@wisc.edu> + +K=[0.2 0.58 0.35;0.25 1.10 1.3;0.3 0.7 1.2]; +tau=[2 2 2;3 3 3;4 4 4]; +s=%s; + +G=K./(1+tau*s); + +RGA=K.*inv(K'); +disp(RGA,"RGA=") + +//IMC based tuning +tauC=5; +Kc=diag(tau/tauC./K); +mprintf("\n\nThe tauI given in book are wrong\n... +refer to Table 11.1 for correct formula\n\n") +tauI=diag(tau)+1; +mprintf('\nWe still however use the ones given in book\n'); + + +disp(Kc,"Kc=") +disp(tauI,"tauI=") +//Refer to Eqns 15-23 and 15-24 +Gc=Kc.*(1+(1)./tauI/s); +//For the sake of brevity we write Gstar as G +//We will account for delays in the for loop that we will write +//Refer to Figure 15.9 Page 295 for details of Smith Predictor + + +//====Making step response models of the continuos transfer functions====// +Ts=0.1;//Sampling time ie delta_T +delay=3/Ts; +N=150/Ts;//Model Order +s=%s; +G=syslin('c',diag(matrix(G,1,9)));//Transfer function +t=0:Ts:N*Ts; +u_sim=ones(9,length(t)); +//u_sim(:,1:4)=zeros(9,4); //input delay to account for 3 min delay in G +S=csim(u_sim,t,G)';//generating step response model for real plant +//plot(t,S); +S(1,:)=[]; +//Now we have these step response models for each of the transfer functions +//[S1 S4 S7 +//S2 S5 S8 +//S3 S6 S9] + +T=150+delay;//Simulation Run Time in minutes(we add delay because our for loop runs till n-delay) +n=T/Ts*2+1; //no. of discrete points in our domain of analysis +//Input initialization T is the Time for simulation + +//========Set point as 10=============// +//p is the controller output +p=zeros(n,3); +delta_p=zeros(n,3); +ytilde=zeros(n,3); //Prediction of Smith Fig 15.9 +e=zeros(n,3); //corrections +edash=zeros(n,3); +delta_edash=zeros(n,3); +ysp=zeros(n,3); +ysp((n-1)/2+1:n,1)=10*ones(n-((n-1)/2+1)+1,1); + +t=-(n-1)/2*Ts:Ts:(n-1)/2*Ts; +y=zeros(n,3); + +for k=(n-1)/2+1:n-delay + + //Error e + e(k,:)=ysp(k-1,:)-y(k-1,:); + + //Error edash + edash(k,:)=e(k-1,:)-ytilde(k-1,:)+ytilde(k-1-delay,:); + //Edash=E-(Y1-Y2)...where Y2 is delayed Y1 + delta_edash(k,:)=edash(k,:)-edash(k-1,:); + + //Controller calculation----Digital PID----Eqn 7-28 Pg 136 (Velocity form) + p(k,:)=p(k-1,:)+[delta_edash(k,:)+edash(k,:)*diag(Ts./tauI)]*diag(Kc); + + //Limits on manipulated variables + p(k,:)=min([(345-180)*ones(1,3);p(k,:)],'r'); + p(k,:)=max([(105-180)*ones(1,3);p(k,:)],'r'); + + delta_p(k,:)=p(k,:)-p(k-1,:); + + + //Prediction + ytilde(k,1)=[S(1:N-1,1);S(1:N-1,4);S(1:N-1,7)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,1) S(N,4) S(N,7)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; + ytilde(k,2)=[S(1:N-1,2);S(1:N-1,5);S(1:N-1,8)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,2) S(N,5) S(N,8)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; + ytilde(k,3)=[S(1:N-1,3);S(1:N-1,6);S(1:N-1,9)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,3) S(N,6) S(N,9)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; + + //Output + y(k+delay,1)=[S(1:N-1,1);S(1:N-1,4);S(1:N-1,7)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,1) S(N,4) S(N,7)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; + y(k+delay,2)=[S(1:N-1,2);S(1:N-1,5);S(1:N-1,8)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,2) S(N,5) S(N,8)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; + y(k+delay,3)=[S(1:N-1,3);S(1:N-1,6);S(1:N-1,9)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,3) S(N,6) S(N,9)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; +end + + +subplot(2,2,1); +plot(t',y(:,1),'--',t',y(:,2),':',t',y(:,3),'-.',t',ysp(:,1),'-'); +set(gca(),"data_bounds",[0 150 -4 12]); //putting bounds on display +l=legend("$y1$","$y2$","$y3$",position=1); +l.font_size=5; +xtitle("","Time(min)","$y$"); +a=get("current_axes"); +c=a.y_label;c.font_size=5; + + +subplot(2,2,2); +plot(t',p(:,1),'--',t',p(:,2),':',t',p(:,3),'-.'); +set(gca(),"data_bounds",[-1 150 -40 100]); //putting bounds on display +l=legend("$p1$","$p2$","$p3$",position=1); +l.font_size=5; +xtitle("","Time(min)","$p$"); +a=get("current_axes"); +c=a.y_label;c.font_size=5; + +mprintf("Note that there is no overshoot around time=25 mins \n... +which is in contrast to what is shown in book") + + +//========Now for set point as 50=============// + +//p is the controller output +p=zeros(n,3); +delta_p=zeros(n,3); +ytilde=zeros(n,3); //Prediction of Smith Fig 15.9 +e=zeros(n,3); //corrections +edash=zeros(n,3); +delta_edash=zeros(n,3); +ysp=zeros(n,3); +ysp((n-1)/2+1:n,1)=50*ones(n-((n-1)/2+1)+1,1); + +t=-(n-1)/2*Ts:Ts:(n-1)/2*Ts; +y=zeros(n,3); + +for k=(n-1)/2+1:n-delay + + //Error e + e(k,:)=ysp(k-1,:)-y(k-1,:); + + //Error edash + edash(k,:)=e(k-1,:)-ytilde(k-1,:)+ytilde(k-1-delay,:); + //Edash=E-(Y1-Y2)...where Y2 is delayed Y1 + delta_edash(k,:)=edash(k,:)-edash(k-1,:); + + //Controller calculation----Digital PID----Eqn 7-28 Pg 136 (Velocity form) + p(k,:)=p(k-1,:)+[delta_edash(k,:)+edash(k,:)*diag(Ts./tauI)]*diag(Kc); + + //Limits on manipulated variables + p(k,:)=min([(345-180)*ones(1,3);p(k,:)],'r'); + p(k,:)=max([(105-180)*ones(1,3);p(k,:)],'r'); + + delta_p(k,:)=p(k,:)-p(k-1,:); + + + //Prediction + ytilde(k,1)=[S(1:N-1,1);S(1:N-1,4);S(1:N-1,7)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,1) S(N,4) S(N,7)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; + ytilde(k,2)=[S(1:N-1,2);S(1:N-1,5);S(1:N-1,8)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,2) S(N,5) S(N,8)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; + ytilde(k,3)=[S(1:N-1,3);S(1:N-1,6);S(1:N-1,9)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,3) S(N,6) S(N,9)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; + + //Output + y(k+delay,1)=[S(1:N-1,1);S(1:N-1,4);S(1:N-1,7)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,1) S(N,4) S(N,7)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; + y(k+delay,2)=[S(1:N-1,2);S(1:N-1,5);S(1:N-1,8)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,2) S(N,5) S(N,8)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; + y(k+delay,3)=[S(1:N-1,3);S(1:N-1,6);S(1:N-1,9)]'... + *[flipdim(delta_p(k-N+1:k-1,1),1);flipdim(delta_p(k-N+1:k-1,2),1);flipdim(delta_p(k-N+1:k-1,3),1)]... + +[S(N,3) S(N,6) S(N,9)]*[p(k-N,1);p(k-N,2);p(k-N,3)]; +end + + +subplot(2,2,3); +plot(t',y(:,1),'--',t',y(:,2),':',t',y(:,3),'-.',t',ysp(:,1),'-'); +set(gca(),"data_bounds",[0 150 -10 60]); //putting bounds on display +l=legend("$y1$","$y2$","$y3$",position=1); +l.font_size=5; +xtitle("","Time(min)","$y$"); +a=get("current_axes"); +c=a.y_label;c.font_size=5; + + +subplot(2,2,4); +plot(t',p(:,1),'--',t',p(:,2),':',t',p(:,3),'-.'); +set(gca(),"data_bounds",[-1 150 -100 200]); //putting bounds on display +l=legend("$p1$","$p2$","$p3$",position=1); +l.font_size=5; +xtitle("","Time(min)","$p$"); +a=get("current_axes"); +c=a.y_label;c.font_size=5; + |