summaryrefslogtreecommitdiff
path: root/1092/CH9/EX9.11/Example9_11.sce
diff options
context:
space:
mode:
Diffstat (limited to '1092/CH9/EX9.11/Example9_11.sce')
-rwxr-xr-x1092/CH9/EX9.11/Example9_11.sce81
1 files changed, 81 insertions, 0 deletions
diff --git a/1092/CH9/EX9.11/Example9_11.sce b/1092/CH9/EX9.11/Example9_11.sce
new file mode 100755
index 000000000..0cf623d34
--- /dev/null
+++ b/1092/CH9/EX9.11/Example9_11.sce
@@ -0,0 +1,81 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS) DYNAMOS
+// Example 9-11
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+// 3-phase WRIM
+V_L = 208 ; // Voltage rating of the WRIM in volt
+P = 6 ; // Number of poles in WRIM
+f = 60 ; // Frequency in Hz
+P_o = 7.5 ; // Power rating of WRIM in hp
+S_r = 1125 ; // Full-load rotor speed in rpm
+R_r = 0.08 ; // Rotor resistance in ohm/phase
+X_lr = 0.4 ; // Locked rotor resistance in ohm/phase
+
+// Calculations
+S = (120*f)/P ; // Speed in rpm of the rotating magnetic field
+// case a
+E_lr = (V_L / sqrt(3))/2 ; // Locked rotor voltage per phase
+
+// case b
+s = (S - S_r)/S ; // Full-load rated slip
+I_r = E_lr / sqrt( (R_r/s)^2 + (X_lr)^2 ); // Rotor current in A per phase at rated speed
+
+// case c
+P_in = ( (I_r)^2 * R_r )/s ; // Rated rotor power input per phase in (W/phase)
+
+// case d
+P_RL = ( (I_r)^2 * R_r ); // Rated rotor copper loss per phase (in W/phase)
+
+// case e
+// Subscript W in P_d indicates calculating P_d in W
+P_d_W = P_in - P_RL ; // Rotor power developed per phase (in W/phase)
+// Subscript hp in P_d indicates calculating P_d in hp
+P_d_hp = P_d_W/746 ; // Rotor power developed per phase (in hp/phase)
+
+// case f
+// subscript 1 in T_d indicates method 1 for calculating T_d
+hp = P_d_hp ;
+T_d1 = (hp*5252)/S_r ; // Rotor torque developed per phase in lb-ft
+
+// subscript 2 in T_d indicates method 2 for calculating T_d
+T_d2 = 7.04*(P_in/S); // Rotor torque developed per phase in lb-ft
+
+// case g
+T_dm = 3*T_d1 ; // Total rotor torque in lb-ft
+
+// case h
+T_o = 7.04*(P_o*746)/S_r ; // Total output rotor torque in lb-ft
+
+// Display the results
+disp("Example 9-11 Solution : ");
+
+printf(" \n Note: Slight variations in the answers I_r,P_in,P_RL,P_d,T_d ");
+printf(" \n are because of non-approximation of E_lr and (R_r/s)^2 + (X_lr)^2");
+printf(" \n while calulating in scilab.\n");
+
+printf(" \n a: Locked rotor voltage per phase :\n E_lr = %d V\n",E_lr);
+
+printf(" \n b: slip :\n s = %.4f ",s);
+printf(" \n\n Rotor current per phase at rated speed :\n I_r = %.2f A/phase\n",I_r);
+
+printf(" \n c: Rated rotor power input per phase :\n P_in = %.f W/phase\n",P_in);
+
+printf(" \n d: Rated rotor copper loss per phase :\n P_RL = %.1f W/phase\n",P_RL);
+
+printf(" \n e: Rotor power developed per phase ");
+printf(" \n P_d = %.f W/phase \n P_d = %.2f hp/phase\n",P_d_W,P_d_hp);
+
+printf(" \n f: Rotor torque developed per phase : ");
+printf(" \n (method 1)\n T_d = %.1f lb-ft/phase",T_d1);
+printf(" \n\n (method 2)\n T_d = %.1f lb-ft/phase\n",T_d2);
+
+printf(" \n g: Total rotor torque : \n T_dm = %d lb-ft\n",T_dm);
+
+printf(" \n h: Total output rotor torque : \n T_o = %d lb-ft",T_o);