diff options
Diffstat (limited to '1092/CH14/EX14.7/Example14_7.sce')
-rwxr-xr-x | 1092/CH14/EX14.7/Example14_7.sce | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/1092/CH14/EX14.7/Example14_7.sce b/1092/CH14/EX14.7/Example14_7.sce new file mode 100755 index 000000000..ba6a106ad --- /dev/null +++ b/1092/CH14/EX14.7/Example14_7.sce @@ -0,0 +1,79 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 14: TRANSFORMERS
+// Example 14-7
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+V = 10 * exp(%i * 0 * (%pi/180)); // Supply voltage of the source 10<0 V
+R_s = 1000 ; // Resistance of the source in ohm
+R_L = 10 ; // Load resistance in ohm
+Z_L = R_L ; // Load resistance in ohm
+
+// Calculations
+// case a
+alpha = sqrt(R_s/R_L) ; // Transformation ratio of the matching transformer for MPT
+
+// case b
+V_1 = V / 2 ; // Terminal voltage in volt of the source at MPT
+
+// case c
+V_2 = V_1 / alpha ; // Terminal voltage in volt across the load at MPT
+
+// case d
+I_2 = V_2 / Z_L ; // Secondary load current in A (method 1)
+I2 = V / (2*alpha*R_L) ; // Secondary load current in A (method 2)
+
+// case e
+I_1 = I_2 / alpha ; // Primary load current drawn from the source in A (method 1)
+I1 = V / (2*R_s) ; // Primary load current drawn from the source in A (method 2)
+
+// case f
+P_L = (I_2)^2 * R_L ; // Maximum power dissipated in the load in W
+
+// case g
+P_s = (I_1)^2 * R_s ; // Power dissipated internally within the source in W
+
+// case h
+P_T1 = V * I_1 * cosd(0) ; // Total power supplied by the source in W(method 1)
+
+P_T2 = P_L + P_s ; // Total power supplied by the source in W(method 2)
+
+// case i
+P_T = P_T1 ;
+eta = P_L / P_T * 100 ; // Power transfer efficiency in percent
+
+// Display the results
+disp("Example 14-7 Solution : ");
+
+printf(" \n a: Transformation ratio of the matching transformer for MPT : ");
+printf(" \n α = %d \n ",alpha );
+
+printf(" \n b: Terminal voltage of the source at MPT :\n V_1 = %d V \n",V_1);
+
+printf(" \n c: Terminal voltage across the load at MPT :\n V_2 = %.1f V \n",V_2);
+
+printf(" \n d: Secondary load current :");
+printf(" \n (method 1) :\n I_2 = %.2f A = %d mA \n ",I_2, 1000*I_2);
+
+printf(" \n (method 2) :\n I_2 = %.2f A = %d mA \n ",I2, 1000*I2);
+
+printf(" \n e: Primary load current drawn from the source : ");
+printf(" \n (method 1) :\n I_1 = %f A = %d mA \n ",I_1 , 1000*I_1 );
+printf(" \n (method 2) :\n I_1 = %f A = %d mA \n ",I1 , 1000*I1 );
+
+printf(" \n f: Maximum power dissipated in the load : ");
+printf(" \n P_L = %f W = %d mW \n",P_L , 1000*P_L );
+
+printf(" \n g: Power dissipated internally within the source : " );
+printf(" \n P_s = %f W = %d mW \n",P_s , 1000*P_s );
+
+printf(" \n h: Total power supplied by the source : ");
+printf(" \n (method 1) :\n P_T = %f W = %d mW \n ",P_T1, 1000*P_T1);
+printf(" \n (method 2) :\n P_T = %f W = %d mW \n ",P_T2, 1000*P_T2);
+
+printf(" \n i: Power transfer efficiency :\n η = %d percent ",eta );
|