diff options
Diffstat (limited to '1092/CH14/EX14.27/Example14_27.sce')
-rwxr-xr-x | 1092/CH14/EX14.27/Example14_27.sce | 102 |
1 files changed, 102 insertions, 0 deletions
diff --git a/1092/CH14/EX14.27/Example14_27.sce b/1092/CH14/EX14.27/Example14_27.sce new file mode 100755 index 000000000..9beee3d5d --- /dev/null +++ b/1092/CH14/EX14.27/Example14_27.sce @@ -0,0 +1,102 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 14: TRANSFORMERS
+// Example 14-27
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+// From diagram in fig.14-23a
+P_L = 14400 ; // Load output power in W
+V_L = 120 ; // Load voltage in volt
+V_b1 = 120 ; // base voltage at point 1 in volt
+V_b2 = 600 ; // base voltage at point 2 in volt
+V_b3 = 120 ; // base voltage at point 3 in volt
+S_b3 = 14.4 ; // base power in kVA
+X_2 = %i*0.25 ; // reactance in p.u
+X_1 = %i*0.2 ; // reactance in p.u
+I_L = 120 ; // Load current in A
+
+// Calculations
+// case a
+R_L = P_L / (V_L^2); // Resistance of the load in ohm
+
+// case b
+Z_bL = (V_b3^2)/(S_b3*1000); // Base impedance in ohm
+
+// case c
+Z_L_pu = R_L / Z_bL ; // per unit load impedance
+
+// case d
+Z_2_pu = X_2 ; // per unit impedance of Tr.2
+
+// case e
+Z_1_pu = X_1 ; // per unit impedance of Tr.1
+
+// case g
+I_bL = (S_b3*1000)/V_b3 ; // Base current in load in A
+
+// case h
+I_L_pu = I_L / I_bL ; // per unit load current
+
+// case i
+V_R_pu = I_L_pu * Z_L_pu ; // per unit voltage across load
+
+// case j
+I_S_pu = I_L_pu ; //per unit current of source
+Z_T_pu = Z_L_pu + Z_1_pu + Z_2_pu ; // Total p.u impedance
+V_S_pu = I_S_pu * Z_T_pu ; // per unit voltage of source
+V_S_pu_m = abs(V_S_pu);//V_S_pu_m=magnitude of V_S_pu in p.u
+V_S_pu_a = atan(imag(V_S_pu) /real(V_S_pu))*180/%pi;//V_S_pu_a=phase angle of V_S_pu in degrees
+
+// case k
+V_S = V_S_pu * V_b1 ; // Actual voltage across source in volt
+V_S_m = abs(V_S);//V_S_m=magnitude of V_S in volt
+V_S_a = atan(imag(V_S) /real(V_S))*180/%pi;//V_S_a=phase angle of V_S in degrees
+
+
+// case l
+I_x_pu = I_L_pu ; // p.u current at point x
+Z_x_pu = Z_L_pu + Z_2_pu ; // p.u impedance at point x
+V_x_pu = I_x_pu * Z_x_pu ; // p.u voltage at point x
+
+// case m
+V_x = V_x_pu * V_b2 ; // Actual voltage at point x in volt
+V_x_m = abs(V_x);//V_x_m=magnitude of V_x in volt
+V_x_a = atan(imag(V_x) /real(V_x))*180/%pi;//V_x_a=phase angle of V_x in degrees
+
+
+// Display the results
+disp("Example 14-27 Solution : ");
+
+printf(" \n a: Resistance of the load :\n R_L = %d Ω \n",R_L);
+
+printf(" \n b: Base impedance :\n Z_bL = %d Ω \n",Z_bL);
+
+printf(" \n c: per unit load impedance :\n Z_L(pu) = ");disp(Z_L_pu);
+
+printf(" \n d: per unit impedance of Tr.2 :\n Z_2(pu) = ");disp(Z_2_pu);
+
+printf(" \n e: per unit impedance of Tr.1 :\n Z_1(pu) = ");disp(Z_1_pu);
+
+printf(" \n f: See Fig.14-23b \n");
+
+printf(" \n g: Base current in load :\n I_bL = %d A (resistive)\n",I_bL);
+
+printf(" \n h: per unit load current :\n I_L_pu = ");disp(I_L_pu);
+
+printf(" \n i: per unit voltage across load :\n V_R_pu");disp(V_R_pu);
+
+printf(" \n j: per unit voltage of source :\n V_S_pu = ");disp(V_S_pu);
+printf(" \n V_S_pu = %.3f <%.2f p.u \n",V_S_pu_m,V_S_pu_a);
+
+printf(" \n k: Actual voltage across source :\n V_S in volt = ");disp(V_S);
+printf(" \n V_S = %.1f <%.2f V \n",V_S_m,V_S_a);
+
+printf(" \n l: p.u voltage at point x :\n V_x(pu) = ");disp(V_x_pu);
+
+printf(" \n m: Actual voltage at point x :\n V_x in volt = ");disp(V_x);
+printf(" \n V_S = %.1f <%.2f V \n",V_x_m,V_x_a);
|