summaryrefslogtreecommitdiff
path: root/1092/CH14/EX14.19/Example14_19.sce
diff options
context:
space:
mode:
Diffstat (limited to '1092/CH14/EX14.19/Example14_19.sce')
-rwxr-xr-x1092/CH14/EX14.19/Example14_19.sce78
1 files changed, 78 insertions, 0 deletions
diff --git a/1092/CH14/EX14.19/Example14_19.sce b/1092/CH14/EX14.19/Example14_19.sce
new file mode 100755
index 000000000..c039f21a5
--- /dev/null
+++ b/1092/CH14/EX14.19/Example14_19.sce
@@ -0,0 +1,78 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 14: TRANSFORMERS
+// Example 14-19
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+
+kVA = 20 ; // kVA rating of the step-down transformer
+S = 20000 ; // power rating of the step-down transformer in VA
+V_1 = 2300 ; // Primary voltage in volt
+V_2 = 230 ; // Secondary voltage in volt
+Z_e1 = 5.75 ; // Equivalent impedance w.r.t HV side in ohm
+R_e1 = 3.3 ; // Equivalent resistance w.r.t HV side in ohm
+X_e1 = 4.71 ; // Equivalent reactance w.r.t HV side in ohm
+
+// w.r.t HV side following is SC-test data
+P1 = 250 ; // wattmeter reading in W
+I1 = 8.7 ; // Input current in A
+V1 = 50 ; // Input voltage in V
+
+// Calculations
+// case a
+Z_e1_drop = V1 ; // High voltage impedance drop in volt
+
+// case b
+theta = acosd(R_e1/Z_e1) ; // PF angle in degrees
+
+R_e1_drop = I1*Z_e1*cosd(theta) ; //HV-side equivalent resistance voltage drop in volt
+
+// case c
+X_e1_drop = I1*Z_e1*sind(theta) ; //HV-side equivalent reactance voltage drop in volt
+
+// case d
+// At unity PF
+cos_theta1 = 1;
+sin_theta1 = sqrt(1 - (cos_theta1)^2);
+
+// Induced voltage when the transformer is delivering rated current to unity PF load
+E_1 = (V_1*cos_theta1 + I1*R_e1) + %i*(V_1*sin_theta1 + I1*X_e1);
+E_1_m = abs(E_1);//E_1_m=magnitude of E_1 in volt
+E_1_a = atan(imag(E_1) /real(E_1))*180/%pi;//E_1_a=phase angle of E_1 in degrees
+
+VR_unity_PF = ( (E_1_m - V_1) / V_1 ) * 100 ; // Transformer voltage regulation
+
+// case e
+// at 0.7 lagging PF
+cos_theta_1 = 0.7 ; // lagging PF
+sin_theta_1 = sqrt(1 - (cos_theta_1)^2);
+
+// Induced voltage when the transformer is delivering rated current to unity PF load
+E1 = (V_1*cos_theta_1 + I1*R_e1) + %i*(V_1*sin_theta_1 + I1*X_e1);
+E1_m = abs(E1);//E1_m=magnitude of E1 in volt
+E1_a = atan(imag(E1) /real(E1))*180/%pi;//E1_a=phase angle of E1 in degrees
+
+VR_lag_PF = ( (E1_m - V_1) / V_1 ) * 100 ; // Transformer voltage regulation
+
+// Display the results
+disp("Example 14-19 Solution : ");
+
+printf(" \n a: High voltage impedance drop :\n I_1*Z_e1 = V_1 = %d\n",Z_e1_drop);
+
+printf(" \n b: θ = %.f degrees \n",theta );
+printf(" \n High voltage resistance drop :\n I_1*R_e1 = %.2f \n",R_e1_drop);
+
+printf(" \n c: High voltage reactance drop :\n I_1*X_e1 = %.2f \n",X_e1_drop);
+
+printf(" \n d: At unity PF,\n E_2 in volt = ");disp(E_1);
+printf(" \n E_2 = %.2f <%.2f V \n ",E_1_m , E_1_a);
+printf(" \n Voltage regulation at unity PF :\n VR = %.2f percent ",VR_unity_PF );
+
+printf(" \n\n e: At 0.7 lagging PF, \n E_2 in volt = ");disp(E1);
+printf(" \n E_2 = %.2f <%.2f V \n ",E1_m , E1_a);
+printf(" \n Voltage regulation at 0.7 lagging PF :\n VR = %.2f percent ",VR_lag_PF );