diff options
Diffstat (limited to '1092/CH14/EX14.13/Example14_13.sce')
-rwxr-xr-x | 1092/CH14/EX14.13/Example14_13.sce | 67 |
1 files changed, 67 insertions, 0 deletions
diff --git a/1092/CH14/EX14.13/Example14_13.sce b/1092/CH14/EX14.13/Example14_13.sce new file mode 100755 index 000000000..6825bf47a --- /dev/null +++ b/1092/CH14/EX14.13/Example14_13.sce @@ -0,0 +1,67 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 14: TRANSFORMERS
+// Example 14-13
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+kVA = 500 ; // kVA rating of the step-down transformer
+V_1 = 2300 ; // Primary voltage in volt
+V_2 = 230 ; // Secondary voltage in volt
+f = 60 ; // Frequency in Hz
+r_1 = 0.1 ; // Primary winding resistance in ohm
+x_1 = 0.3 ; // Primary winding reactance in ohm
+r_2 = 0.001 ; // Secondary winding resistance in ohm
+x_2 = 0.003 ; // Secondary winding reactance in ohm
+// calculated data from Example 14-12
+Z_L = 0.1058 ; // Load impedance in ohm
+
+// Calculations
+alpha = V_1 / V_2 ; // Transformation ratio
+
+// case a
+R_e1 = r_1 + (alpha)^2 * r_2 ; // Equivalent internal resistance referred to the
+// primary side in ohm
+
+// case b
+X_e1 = x_1 + (alpha)^2 * x_2 ; // Equivalent internal reactance referred to the
+// primary side in ohm
+
+// case c
+Z_e1 = R_e1 + %i*(X_e1) ; // Equivalent internal impedance referred to the
+// primary side in ohm
+Z_e1_m = abs(Z_e1);//Z_e1_m=magnitude of Z_e1 in ohm
+Z_e1_a = atan(imag(Z_e1) /real(Z_e1))*180/%pi;//Z_e1_a=phase angle of Z_e1 in degrees
+
+// case d
+Z_L_prime = (alpha)^2 * (Z_L); // Equivalent secondary load impedance referred
+// to the primary side in ohm
+
+// case e
+R_L = Z_L ; // Load resistance in ohm
+X_L = 0 ; // Load reactance in ohm
+
+// Primary load current in A , when V_1 = 2300 V
+I_1 = V_1 / ( (R_e1 + alpha^2*R_L) + %i*(X_e1 + alpha^2*X_L) );
+
+// Display the results
+disp("Example 14-13 Solution : ");
+
+printf(" \n a: Equivalent internal resistance referred to the primary side :");
+printf(" \n R_c1 = %.2f ohm \n ",R_e1 );
+
+printf(" \n b: Equivalent internal reactance referred to the primary side :");
+printf(" \n X_c1 = %.2f ohm \n ",X_e1 );
+
+printf(" \n c: Equivalent internal impedance referred to the primary side : ");
+printf(" \n Z_c1 in ohm = ");disp(Z_e1);
+printf(" \n Z_c1 = %.3f <%.2f ohm \n ", Z_e1_m , Z_e1_a );
+
+printf(" \n d: Equivalent secondary load impedance referred to the primary side :");
+printf(" \n (alpha)^2 * Z_L = %.2f ohm = (alpha)^2 * R_L \n",Z_L_prime);
+
+printf(" \n e: Primary load current :\n I_1 = %f A ≈ %.f A ", I_1, I_1);
|