summaryrefslogtreecommitdiff
path: root/1092/CH14/EX14.11/Example14_11.sce
diff options
context:
space:
mode:
Diffstat (limited to '1092/CH14/EX14.11/Example14_11.sce')
-rwxr-xr-x1092/CH14/EX14.11/Example14_11.sce66
1 files changed, 66 insertions, 0 deletions
diff --git a/1092/CH14/EX14.11/Example14_11.sce b/1092/CH14/EX14.11/Example14_11.sce
new file mode 100755
index 000000000..0e6825525
--- /dev/null
+++ b/1092/CH14/EX14.11/Example14_11.sce
@@ -0,0 +1,66 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 14: TRANSFORMERS
+// Example 14-11
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+kVA = 500 ; // kVA rating of the step-down transformer
+V_1 = 2300 ; // Primary voltage in volt
+V_2 = 230 ; // Secondary voltage in volt
+f = 60 ; // Frequency in Hz
+r_1 = 0.1 ; // Primary winding resistance in ohm
+x_1 = 0.3 ; // Primary winding reactance in ohm
+r_2 = 0.001 ; // Secondary winding resistance in ohm
+x_2 = 0.003 ; // Secondary winding reactance in ohm
+
+// Calculations
+alpha = V_1 / V_2 ; // Transformation ratio
+// case a
+I_2 = (kVA*1000) / V_2 ; // Secondary current in A
+I_1 = I_2 / alpha ; // Primary current in A
+
+// case b
+Z_2 = r_2 + %i*(x_2); // Secondary internal impedance in ohm
+Z_2_m = abs(Z_2);//Z_2_m=magnitude of Z_2 in ohm
+Z_2_a = atan(imag(Z_2) /real(Z_2))*180/%pi;//Z_2_a=phase angle of Z_2 in degrees
+
+Z_1 = r_1 + %i*(x_1); // Primary internal impedance in ohm
+Z_1_m = abs(Z_1);//Z_1_m=magnitude of Z_1 in ohm
+Z_1_a = atan(imag(Z_1) /real(Z_1))*180/%pi;//Z_1_a=phase angle of Z_1 in degrees
+
+// case c
+I_2_Z_2 = I_2 * Z_2_m ; // Secondary internal voltage drop in volt
+I_1_Z_1 = I_1 * Z_1_m ; // Primary internal voltage drop in volt
+
+// case d
+E_2 = V_2 + I_2_Z_2 ; // Secondary induced voltage in volt
+E_1 = V_1 - I_1_Z_1 ; // Primary induced voltage in volt
+
+// case e
+ratio_E = E_1 / E_2 ; // ratio of primary to secondary induced voltage
+ratio_V = V_1 / V_2 ; // ratio of primary to secondary terminal voltage
+
+// Display the results
+disp("Example 14-11 Solution : ");
+
+printf(" \n a: Secondary current :\n I_2 = %.f A \n ",I_2 );
+printf(" \n Primary current :\n I_1 = %.1f A \n ",I_1 );
+
+printf(" \n b: Secondary internal impedance : \n Z_2 in ohm = ");disp(Z_2);
+printf(" \n Z_2 = %f <%.2f ohm \n ",Z_2_m , Z_2_a );
+printf(" \n Primary internal impedance : \n Z_1 in ohm = ");disp(Z_1);
+printf(" \n Z_1 = %f <%.2f ohm \n ",Z_1_m , Z_1_a );
+
+printf(" \n c: Secondary internal voltage drop :\n I_2*Z_2 = %.2f V \n ",I_2_Z_2);
+printf(" \n Primary internal voltage drop :\n I_1*Z_1 = %.2f V \n ",I_1_Z_1);
+
+printf(" \n d: Secondary induced voltage :\n E_2 = %.2f V \n",E_2 );
+printf(" \n Primary induced voltage :\n E_1 = %.2f V \n",E_1 );
+
+printf(" \n e: Ratio of E_1/E_2 = %.2f = α = N_1/N_2 \n",ratio_E );
+printf(" \n But V_1/V_2 = %d ",ratio_V );