summaryrefslogtreecommitdiff
path: root/1052/CH3
diff options
context:
space:
mode:
Diffstat (limited to '1052/CH3')
-rwxr-xr-x1052/CH3/EX3.2/2.sce14
-rwxr-xr-x1052/CH3/EX3.3/3.sce17
-rwxr-xr-x1052/CH3/EX3.4/34.sce15
-rwxr-xr-x1052/CH3/EX3.5/5.sce15
4 files changed, 61 insertions, 0 deletions
diff --git a/1052/CH3/EX3.2/2.sce b/1052/CH3/EX3.2/2.sce
new file mode 100755
index 000000000..2cbd9ed56
--- /dev/null
+++ b/1052/CH3/EX3.2/2.sce
@@ -0,0 +1,14 @@
+clc;
+//Example 3.2
+//Page no. 25
+printf("Example 3.2 Page no. 25\n\n")
+//given temperature(T),pressure(P),capilLary tube diameter(D),water density(rho),contact angle(ththetaeta)
+sigma=0.0712//surface tension (sigma)of water at 30 degree C temperature in appendix A.4
+D=0.008
+R=D/2
+theta=0
+g=9.807
+rho=1000
+printf("surface tension=%fN/m\n Radius=%fm\n theta=%fdegree\n g=%fm/s^2\n rho=%fkg/m^3\n",sigma,R,theta,g,rho)
+h=(2*sigma*cos(0))/(rho*g*R)//height rise of the liquid
+printf("height of liquid rise =%fm\n",h)
diff --git a/1052/CH3/EX3.3/3.sce b/1052/CH3/EX3.3/3.sce
new file mode 100755
index 000000000..f00473b3e
--- /dev/null
+++ b/1052/CH3/EX3.3/3.sce
@@ -0,0 +1,17 @@
+clc;
+//Example 3.3
+//Page no. 26
+printf("Example 3.3 Page no. 26\n\n")
+//given at 30 degree temerature
+//properties of water from appendix A.2 density(rho),surface tension(sigma)
+rho=996
+sigma=0.071
+printf("rho=%f\kg/m^3\n surface tension (sigma)=%f N/m\n",rho,sigma)
+theta=0//negligible angle of contact
+g=9.807
+h=0.001//less than one milimeter
+printf("theta=%f degree \n g=%f m/s^2\n h=%f m\n",theta,g,h)
+R=(2*sigma*cos(0))/(rho*g*h)//by capiilary rise equation
+D=2*R
+printf("R=%f m\n D=%f m\n",R,D)
+//if the tube diameter is greater than 0.029075 mm, then the capillary rise will be less than 1mm
diff --git a/1052/CH3/EX3.4/34.sce b/1052/CH3/EX3.4/34.sce
new file mode 100755
index 000000000..36c1dd172
--- /dev/null
+++ b/1052/CH3/EX3.4/34.sce
@@ -0,0 +1,15 @@
+clc;
+//Example 3.4
+//page no. 28
+printf("Example 3.4 page no 28\n\n");
+S=2//surface area ft^2
+F=10//magnitude of force,lbf
+theta=%pi/6//angle
+F_p=F*cos(theta)//parallel comp. of force
+printf("\n F_p=%f lbf",F_p);
+F_n=F*sin(theta)//normal comp. of force
+printf("\n F-n=%f lbf",F_n);
+tou=F_p/S//shear stress
+P=F_n/S//pressure
+printf("\n tou=%f psf\n P=%f psf",tou,P);
+
diff --git a/1052/CH3/EX3.5/5.sce b/1052/CH3/EX3.5/5.sce
new file mode 100755
index 000000000..8ff064479
--- /dev/null
+++ b/1052/CH3/EX3.5/5.sce
@@ -0,0 +1,15 @@
+clc;
+//Example 3.5
+//Page no. 30
+printf("Example 3.5 Page no. 30\n\n")
+//determine potential energy of water
+// given height,mass of water,g
+m=1
+g=9.8
+Z1=0//at ground level
+Z2=10//at 10 m above from ground level
+printf("m=%f kg\n g=%f m/s^2\n Z1=%f m\n Z2=%f m\n",m,g,Z1,Z2)
+PE1=m*g*Z1//potential energy at ground level
+PE2=m*g*Z2//potential energy at 10m height
+PE= PE2-PE1
+printf("PE1=%fJ\n PE2=%fJ\n PE=%fJ\n",PE1,PE2,PE)