diff options
Diffstat (limited to '1052/CH12')
-rwxr-xr-x | 1052/CH12/EX12.1/121.sce | 21 | ||||
-rwxr-xr-x | 1052/CH12/EX12.2/122.sce | 12 | ||||
-rwxr-xr-x | 1052/CH12/EX12.3/123.sce | 12 | ||||
-rwxr-xr-x | 1052/CH12/EX12.5/125.sce | 16 | ||||
-rwxr-xr-x | 1052/CH12/EX12.6/126.sce | 9 | ||||
-rwxr-xr-x | 1052/CH12/EX12.7/127.sce | 31 |
6 files changed, 101 insertions, 0 deletions
diff --git a/1052/CH12/EX12.1/121.sce b/1052/CH12/EX12.1/121.sce new file mode 100755 index 000000000..fdb0e116a --- /dev/null +++ b/1052/CH12/EX12.1/121.sce @@ -0,0 +1,21 @@ +clc;
+//Example 12.1
+//page no 124
+printf("Example 12.1 page no 124\n\n");
+T_i=660//temperature of flue at inlet in furnsce
+D_1=6//inside diameter of pipe,ft
+v_1=25//velocity at inlet
+printf("\n temperature at inlet T_i=%f k\n diameter at inlet D_1=%f ft\n velocity at inlet v_1=%f ft/s",T_i,D_1,v_1);
+A_1=%pi/4*D_1^2;
+q_1=A_1*v_1//volumatric flow rate at inlet
+printf ("\n area at ilet A_1=%f st^2\n volumatric flow rate at inlet q_1=%f ft^3/s",A_1,q_1);
+//applying charle's law for volumatic flow out of the scrubber
+//given
+T_2=2360//the temperature up to which furnace heats the gas
+v_2=40//velocity of flow at outlet
+printf("\n temperature T_2=%f k\n velocity of flow at outlet v_2=%f ft/s",T_2,v_2);
+q_2=q_1*(T_2/T_i)//volumatric flow rate at outlet
+A_2=q_2/v_2// cross sectional area at outlet duct
+printf("\n volumatric flow rate at outlet q_2=%f ft^3/s\n cross sectional area at outlet A_2=%f ft^2 ",q_2,A_2);
+D_2=sqrt(4*A_2/%pi)//diameter at outlet
+printf("\n diameter at outlet D_2=%f ft ",D_2);
diff --git a/1052/CH12/EX12.2/122.sce b/1052/CH12/EX12.2/122.sce new file mode 100755 index 000000000..dbfab1d9f --- /dev/null +++ b/1052/CH12/EX12.2/122.sce @@ -0,0 +1,12 @@ +clc;
+//Example 12.2
+//page no 125
+printf("Example 12.2 page no 125\n\n");
+//to calculate reynolds number
+L=2.54//diameter of tube in cm
+rho=1.50//density of liquid in gm/cm^3
+v=20//velocity of flow in cm/s
+meu=0.78e-2//viscosity of liquid in g/cm*s
+printf("\n diameter of tube L=%f cm\n density rho=%f gm/cm^3\n velocity v=%f cm/s\n viscosity meu=%f g/cm*s",L,rho,v,meu);
+R_e=L*rho*v/meu//reynolds number
+printf("\n Reynolds no. R_e=%f ",R_e);
diff --git a/1052/CH12/EX12.3/123.sce b/1052/CH12/EX12.3/123.sce new file mode 100755 index 000000000..820cb4690 --- /dev/null +++ b/1052/CH12/EX12.3/123.sce @@ -0,0 +1,12 @@ +clc;
+//Example 12.3
+//page no 126
+printf("\n Example 12.3 page no 126\n\n");
+//to determine the teynolds no of a gas stream
+v=3.8//velocity through the duct
+D=0.45//duct diameter
+rho=1.2//density of gas
+meu=1.73e-5//viscosity of gas
+printf("\n velocity v=%f m/s\n diameter D=%f m\n density rho=%f kg/m^3\n viscosity meu=%f kg/m*s",v,D,rho,meu);
+R_e=D*v*rho/meu//reynolds no
+printf("\n reynoldsno R_e=%f ",R_e);
diff --git a/1052/CH12/EX12.5/125.sce b/1052/CH12/EX12.5/125.sce new file mode 100755 index 000000000..7d868812b --- /dev/null +++ b/1052/CH12/EX12.5/125.sce @@ -0,0 +1,16 @@ +clc;
+//Example 12.5
+//page no 128
+printf(" Example 12.5 page no 128\n\n");
+SG=0.96//sp.gravity of a liquid
+R=0.03//radius of long circular tube through which liquid flow
+//flow rate is related with the diameter of circular tube
+q=2*%pi*(3*R^2-(200/3)*R^3);
+printf("\n volumatric flow rate q=%f m^3/s",q);
+rho_w=1000//density of water
+rho_l=SG*rho_w//density of liquid
+m_dot=rho_l*q//mass flow rate
+printf("\n mass flow rate m_dot=%f kg/s",m_dot);
+s=%pi*R^2//surface area
+v_av=q/s//average velocity
+printf("\n average velocity v_av=%f m/s",v_av);
diff --git a/1052/CH12/EX12.6/126.sce b/1052/CH12/EX12.6/126.sce new file mode 100755 index 000000000..34313347c --- /dev/null +++ b/1052/CH12/EX12.6/126.sce @@ -0,0 +1,9 @@ +clc;
+//Example 12.6
+//page no 129
+printf("Example 12.6 page no 129\n\n");
+//refer to example 12.6
+V=20//volume of liquid passes through the section,m^3
+q=0.00565//volumatric flow rate
+t=V/q//time to pass liquid pass through volume V
+printf("\n time t=%f s",t);
diff --git a/1052/CH12/EX12.7/127.sce b/1052/CH12/EX12.7/127.sce new file mode 100755 index 000000000..b8250b445 --- /dev/null +++ b/1052/CH12/EX12.7/127.sce @@ -0,0 +1,31 @@ +clc;
+//Example 12.7
+//page no 130
+printf("Example 12.7 page no. 130\n\n");
+//a gas is flowing through a circular duct
+D=1.2//diameter of duct,ft
+T=760//temperature,k
+P=1//pressure
+T_s=520//standard temperature
+P_s=1//standard pressure
+q_s=1000// standard volumatric flow rate,in scfm(given)
+q=q_s*(T/T_s)*(P/P_s)//actual volumatric flow rate
+printf("\n actual volumatric flow rate q=%f acfm ",q);
+s=%pi*D^2/4//cross sectional area
+s_m=s*0.0929//area in m^2
+v=(q/s)/60//velocity
+printf("\n average velocity v=%f ft/s",v);
+MW=33//mlecular weight of gas
+R=0.7302//gas constant
+rho=(P*MW)/(R*T)//density from ideal gas law
+printf("\n density rho=%f lb/ft^3",rho);
+m_dot=rho*v*s_m//mass flow rate
+printf("\n mass flow rate m_dot=%f lb/s",m_dot);//printing mistake in book
+D_m=0.366//diamter in m
+v_m=6.55//velocity in m/s
+rho_m=rho*(0.4536/.3048^3)//density in kg/m^3
+rho_m=0.952//round off value
+printf("\nv_m=%f",v_m);
+meu=2.2e-5//viscosity of gas in
+R_e=D_m*v_m*rho_m/meu//reynolds no
+printf("\n reynolds no R_e=%f ",R_e);//calculation error in book
|