diff options
Diffstat (limited to '1040/CH9')
-rw-r--r-- | 1040/CH9/EX9.1/Chapter9_Ex1.sce | 48 | ||||
-rw-r--r-- | 1040/CH9/EX9.2/Chapter9_Ex2.sce | 47 |
2 files changed, 95 insertions, 0 deletions
diff --git a/1040/CH9/EX9.1/Chapter9_Ex1.sce b/1040/CH9/EX9.1/Chapter9_Ex1.sce new file mode 100644 index 000000000..a43fd6b50 --- /dev/null +++ b/1040/CH9/EX9.1/Chapter9_Ex1.sce @@ -0,0 +1,48 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-9 Ex9.1 Pg No.376
+//Title:Model II- Volumetric Mass Transfer Coefficient (K)
+//============================================================================================================
+
+clear
+clc
+//INPUT
+u0=[ 0.1 0.3 0.5 0.75 0.95 1.15];//Fluid Velocities (m/sec)
+X=[0.923 0.872 0.846 0.775 0.728 0.664];//Conversion
+h_by_h0=[1.26 1.44 1.66 2.0 2.3 2.7];//Height of bed under fluidized condition by height of packed bed
+Epsilon_m=0.456;//Fraction of voids in packed bed
+h0=0.75;//Height of packed bed (m)
+k_r=4.45 ;//Reaction rate constant(sec-1)
+W=5;//Weight of the bed (kg)
+
+
+//CALCULATION
+n=length(X);
+for i=1:n
+ K0_L_by_u0(i)=log(1/(1-X(i)));//Refer equation 9.21 Pg No.371
+ L(i)=h_by_h0(i)*h0;
+ one_minus_epsilon(i)=(1-Epsilon_m)/h_by_h0(i);
+ k_rhob(i)=k_r*one_minus_epsilon(i);
+ K0(i)=K0_L_by_u0(i)*u0(i)/L(i);
+ K(i)=1/((K0(i).^(-1))-(1/k_rhob(i))); //Refer equation 9.19 Pg No.371
+end
+
+
+//OUTPUT
+mprintf('\nThe values of K for given velocities')
+mprintf('\n u (m/sec) \t K (sec-1) ');
+mprintf('\n===================================================================');
+for i=1:n
+ mprintf('\n %.3g \t \t %0.3f',u0(i),K(i));
+end
+
+//FILE OUTPUT
+fid= mopen('.\Chapter9-Ex1-Output.txt','w');
+mfprintf(fid,'\nThe values of K for given velocities')
+mfprintf(fid,'\n u (m/sec) \t K (sec-1) ');
+mfprintf(fid,'\n===================================================================');
+for i=1:n
+ mfprintf(fid,'\n %.3g \t \t %0.3f',u0(i),K(i));
+end
+
+//==============================================END OF PROGRAM=============================================
+
diff --git a/1040/CH9/EX9.2/Chapter9_Ex2.sce b/1040/CH9/EX9.2/Chapter9_Ex2.sce new file mode 100644 index 000000000..74d4f2779 --- /dev/null +++ b/1040/CH9/EX9.2/Chapter9_Ex2.sce @@ -0,0 +1,47 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-9 Ex9.2 Pg No.389
+//Title: Model II-Fraction unconverted naphthalene
+//===========================================================================================================
+clear
+clc
+//INPUT
+D=2.13 ;//Reactor Diameter(m)
+L=7.9;//Reactor length (m)
+dp_bar= 53*10^(-6);//Particle size (m)
+u_mf=0.077;//Minimum fluidzation velocity(cm/s)
+u_mb=0.5;//Minimum bubbling velocity(cm/s)
+rho_bulk=770;//Bulk density (kg/m3)
+rho_b=350;//Density (kg/m3)
+Epsilon_m=0.44;//Porosity of bed
+T_K=636;//Reaction Temperature (K)
+P=266;//Reaction Pressure (kPa)
+k_1=1.8;//Reaction rate constant (sec-1)
+k_2=k_1;
+u0=0.43;//Velocity (m/sec)
+C0=2*10^(-2);//Initial concentration (%)
+
+//CALCULATION
+k=k_1+k_2;
+one_minus_epsilon=(1-Epsilon_m)*(rho_b/rho_bulk);
+k_corrected=k*one_minus_epsilon;//based on bed volume
+Nr=k_corrected*L/u0;
+K=0.8;//From figure 9.12 at u0=0.43m/sec Pg No.376
+Nm=K*L/u0;//Refer equation 9.21 Pg No.371
+N=1/((1/Nm)+(1/Nr));//Refer equation 9.22 Pg No.371
+X=(1-exp(-N));//Refer equation 9.23 Pg No.371
+C_out=(1-X)*C0;
+C_out_ppm=C_out*(10^6);
+
+//OUTPUT
+mprintf('\nThe fraction of naphthalene unconverted is %0.0f ppm ',C_out_ppm);
+
+//FILE OUTPUT
+fid= mopen('.\Chapter9-Ex2-Output.txt','w');
+mfprintf(fid,'\nThe fraction of naphthalene unconverted is %0.0f ppm ',C_out_ppm);
+mclose(fid);
+
+
+//===========================================END OF PROGRAM=================================================
+
+
+
|