diff options
Diffstat (limited to '1040/CH8')
-rw-r--r-- | 1040/CH8/EX8.1/Chapter8_Ex1_Output.txt | 5 | ||||
-rw-r--r-- | 1040/CH8/EX8.1/Ex8_1.sce | 37 | ||||
-rw-r--r-- | 1040/CH8/EX8.2/Chapter8_Ex2_Output.txt | 3 | ||||
-rw-r--r-- | 1040/CH8/EX8.2/Ex8_2.sce | 62 | ||||
-rw-r--r-- | 1040/CH8/EX8.3/Chapter8_Ex3_Output.txt | 14 | ||||
-rw-r--r-- | 1040/CH8/EX8.3/Ex8_3.sce | 85 |
6 files changed, 206 insertions, 0 deletions
diff --git a/1040/CH8/EX8.1/Chapter8_Ex1_Output.txt b/1040/CH8/EX8.1/Chapter8_Ex1_Output.txt new file mode 100644 index 000000000..533ea8272 --- /dev/null +++ b/1040/CH8/EX8.1/Chapter8_Ex1_Output.txt @@ -0,0 +1,5 @@ +
+The Gas absorption coefficient is 0.145500 sec-1
+ The Fraction of overall resistance due to gas absorption
+ Run 1 42%
+ Run 2 65%
\ No newline at end of file diff --git a/1040/CH8/EX8.1/Ex8_1.sce b/1040/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..7dd99cd18 --- /dev/null +++ b/1040/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,37 @@ +//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-8 Ex8.1 Pg No. 323
+//Title:Gas absorption coefficient and fraction of overall resistance
+//============================================================================================================
+clear
+clc
+//INPUT
+rho_oil=0.8;//Density of oil (g/cm3)
+IV_init=130;//Iodine Value initial
+IV_final=80;//Iodine Value final
+P=45;//Pressure of system (psig)
+T_C=204;// Temperature of system (°C)
+t_run=[26 17];//Time required for hydrogenation run 2;
+frac_Ni=[0.005 0.0125]//Fraction of Nickel used for different run
+
+//CALCULATION
+r_ave=((IV_init -IV_final))*(0.039*rho_oil)*(1/60).*(t_run.^(-1));//Relationship between Iodine value and Hydrogen consumption (mol- H2/ L sec)
+H_H2= 4*10^(-3);//Solubility of H2 from Fig8.4 Pg No.322
+P_H2=(P/14.7)+1;//Absolute Pressure in (atm)
+C_H2=P_H2 *H_H2;
+Ci_by_r=C_H2.*(r_ave.^(-1));
+Coeff_R_cat=frac_Ni.^(-1);
+equation=[ones(1,2);Coeff_R_cat]//Simultaneous Equation
+Resistance= Ci_by_r*inv(equation);
+Gas_abs_resistance=(Resistance(1)*100 ).*(Ci_by_r.^(-1));
+Gas_abs_coefficient=(1/Resistance(1));
+
+//OUTPUT
+mprintf('\nThe Gas absorption coefficient is %f sec-1',Gas_abs_coefficient);
+mprintf('\n The Fraction of overall resistance due to gas absorption\n Run 1 %0.0f%% \n Run 2 %0.0f%%',Gas_abs_resistance(1),Gas_abs_resistance(2));
+
+//FILE OUTPUT
+fid= mopen('.\Chapter8-Ex1-Output.txt','w');
+mfprintf(fid,'\nThe Gas absorption coefficient is %f sec-1',Gas_abs_coefficient);
+mfprintf(fid,'\n The Fraction of overall resistance due to gas absorption\n Run 1 %0.0f%% \n Run 2 %0.0f%%',Gas_abs_resistance(1),Gas_abs_resistance(2));
+mclose(fid);
+//=======================================================END OF PROGRAM=================================================
diff --git a/1040/CH8/EX8.2/Chapter8_Ex2_Output.txt b/1040/CH8/EX8.2/Chapter8_Ex2_Output.txt new file mode 100644 index 000000000..f1d0cf0c6 --- /dev/null +++ b/1040/CH8/EX8.2/Chapter8_Ex2_Output.txt @@ -0,0 +1,3 @@ +
+The external mass transfer resistance is about 8% of overall resistance
+ The external mass transfer resistance is barely significant
\ No newline at end of file diff --git a/1040/CH8/EX8.2/Ex8_2.sce b/1040/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..37b9fc4ae --- /dev/null +++ b/1040/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,62 @@ +//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-8 Ex8.2 Pg No. 329
+//Title:External Mass Transfer resistance
+//===========================================================================================================
+
+clear
+clc
+//INPUT
+Chi=1.9;
+M_A=2;//Molecular weight of Hydrogen
+M_B=32;//Molecular weight of methanol
+rho=0.79;//Density of methanol
+myu=0.52;//Viscosity of methanol (cP)
+V_A=14.3//Molar volume H2
+T_C=30;//Operating Temperature(°C)
+T_K=273+T_C//Temperature (K)
+Epsilon=0.4;//Porosity
+rho_cat_dry=1.2;//Density of dry catalyst (g/cm3)
+rho_s=2;//Solid density
+g=9.8// Acceleration due to gravity(m/s2)
+d_p=10^(-3);//Size of catalyst (cm)
+lambda=1.3;//From equation 8.4 Pg. No. 317
+r_vol=2.4;//Measured rate (L/min)
+V_mol=22.4;//(L/mol) assuming ideal gas
+C_H2=4.1*10^(-3);//From Figure 8.3 (mol/L) Pg. No. 321
+
+
+//CALCULATION
+//Assume D_H2 is three times the value given by the Wilke–Chang Equation
+D_H2=3*(7.4*(10^(-8))*(Chi*M_B)^(0.5)*T_K)/(myu*(V_A)^0.6)
+Sc=myu*10^-2/(rho*D_H2);
+rho_cat_methanol=(1-Epsilon)*rho_s+Epsilon*rho;
+delta_rho=rho_cat_methanol-rho;
+v_t=(g*10*(d_p)^2*delta_rho)/(18*myu*10^-2);// From Stoke's Law
+Re=rho*v_t*d_p/(myu*10^-2);
+Sh_star=2+0.6*(Re)^(0.5)*(Sc^(1/3));//Refer equation 8.9 Pg.No.325
+kc_star=Sh_star*D_H2/d_p;
+kc=2*kc_star;//With vigorous agitation
+a_c=6*lambda/(d_p*rho_cat_dry);//From Equation 8.4 Pg. No. 317
+r_mol=r_vol/(22.4*60);//
+delta_C_ext=r_mol*10^3/(kc*a_c);
+percent_ext_resistance=(delta_C_ext/C_H2)*100;
+
+//OUTPUT
+mprintf('\nThe external mass transfer resistance is about %0.0f%% of overall resistance',percent_ext_resistance);
+mprintf('\n The external mass transfer resistance is barely significant');
+
+//FILE OUTPUT
+fid= mopen('.\Chapter8-Ex2-Output.txt','w');
+mfprintf(fid,'\nThe external mass transfer resistance is about %0.0f%% of overall resistance',percent_ext_resistance);
+mfprintf(fid,'\n The external mass transfer resistance is barely significant');
+mclose(fid);
+//=====================================================END OF PROGRAM=========================================
+
+
+
+
+
+
+
+
+
diff --git a/1040/CH8/EX8.3/Chapter8_Ex3_Output.txt b/1040/CH8/EX8.3/Chapter8_Ex3_Output.txt new file mode 100644 index 000000000..f754b548e --- /dev/null +++ b/1040/CH8/EX8.3/Chapter8_Ex3_Output.txt @@ -0,0 +1,14 @@ +
+ OUTPUT Ex8.3.a
+==========================================================
+ The Apparent rate constants are
+ Run1 1.96 hr-1
+ Run2 1.27 hr-1
+ The exponent value = 0.7 hence the difference is not consistent with repect to equations (8.23) and (8.24)for the apparent rate constants obtained
+ The error may be due to error in assuming a first order reaction
+
+
+ OUTPUT Ex8.3.b
+==========================================================
+ The internal effectiveness factor based on Sulphur and Hydrogen diffusion are 2.06 and 0.28 respectively
+ The internal effectiveness factor based on Hydrogen is negligible
\ No newline at end of file diff --git a/1040/CH8/EX8.3/Ex8_3.sce b/1040/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..777d58e17 --- /dev/null +++ b/1040/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,85 @@ +//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-8 Ex8.3 Pg No.
+//Title:Apparent rate constant and consistency
+//===========================================================================================================
+
+clear
+clc
+// COMMON INPUT
+LHSV_inv=[0.75 1.39];//Refer table 8.2 Test Results (Liquid Hourly Space Velocity)
+X_S=[0.77 0.83];//Refer table 8.2 Percentage Sulphur removal
+T_C=365;//Operating Temperature (°C)
+rho=0.64;//Density of Sulphur Compounds (g/cm3)
+myu=0.5;//Viscosity(cP)
+T_K=273+T_C;//Temperature (K)
+M_B=374;//For CHS compounds(Refer table8.1)
+V_A=M_B/0.6;//Molar volume
+Chi=1;
+Epsilon_by_tau=0.1;
+D_pore_by_D_bulk=0.5;//Hinderance due to large molecules
+epsilon_holdup=0.6;// Assuming bed consists 60% catalyst
+k_app_rhob=1.96//Refer Ex8.3.a Run 1
+eta=0.74;
+R=0.095;//Size of particle
+C_H2_incorrect=0.48;//Solubility of H2 at 56 atm
+P_incorrect=56;//Incorrect Pressure
+P_correct=65;//Correct Pressure
+m_feed=640;// Concentration of Feed (g/L);
+percent_S=2.04;//Percentage of Sulphur
+MW_S=32;//Molecular weight of Sulphur
+N_H2=1.5;//Moles of H2
+V_H2=14.3;//Solubility of Hydrogen
+
+//CALCULATION (Ex8.3.a)
+for i=1:2
+ kapp_rhob(i)=log((1/(1-X_S(i))))*(1/LHSV_inv(i));//Refer Equation 8.21
+
+end
+L=LHSV_inv(2)/LHSV_inv(1);
+kapp_ratio=kapp_rhob(1)/kapp_rhob(2);
+n=log10(kapp_ratio)/log10(L);
+
+//CALCULATION (Ex8.3.b)
+//FOR SULPHUR
+D_CHS=(7.4*(10^(-8))*(Chi*M_B)^(0.5)*T_K)/(myu*(V_A)^0.6);
+D_e_S=Epsilon_by_tau*D_pore_by_D_bulk*D_CHS;
+epsilon_holdup=0.6;// Assuming bed consists 60% catalyst
+k_app_S=k_app_rhob/(3600*epsilon_holdup);//Refer Ex8.3.a
+phi_app_S=R*(k_app_S/D_e_S)^(0.5);
+//FOR H2
+C_H2_corrected=C_H2_incorrect*(P_correct/P_incorrect);
+C_S_initial=m_feed*percent_S*10^(-2)/MW_S;
+Initial_rate=k_app_rhob*C_S_initial;
+k_app_H2=N_H2*Initial_rate/(3600*epsilon_holdup*C_H2_corrected);
+//Assume D_H2 is three times the value given by the Wilke–Chang Equation
+D_H2=3*(7.4*(10^(-8))*(Chi*M_B)^(0.5)*T_K)/(myu*(V_H2)^0.6);
+D_e_H2=Epsilon_by_tau*D_H2;
+phi_app_H2=R*(k_app_H2/D_e_H2)^(0.5);
+
+//OUTPUT (Ex8.3.a)
+mprintf('\n OUTPUT Ex8.3.a');
+mprintf('\n==========================================================');
+mprintf('\n\tThe Apparent rate constants are \n\t Run1 %0.2f hr-1 \n\t Run2 %0.2f hr-1 ',kapp_rhob(1),kapp_rhob(2))
+mprintf('\n\tThe exponent value = %0.1f hence the difference is not consistent with repect to equations (8.23) and (8.24) for the apparent rate constants obtained',n);
+mprintf('\n\tThe error may be due to error in assuming a first order reaction');
+
+//OUTPUT (Ex8.3.b)
+mprintf('\n\n\n OUTPUT Ex8.3.b');
+mprintf('\n==========================================================');
+mprintf('\n\tThe internal effectiveness factor based on Sulphur and Hydrogen diffusion are %0.2f and %0.2f respectively',phi_app_S,phi_app_H2);
+mprintf('\n\tThe internal effectiveness factor based on Hydrogen is negligible');
+
+//FILE OUTPUT
+fid= mopen('.\Chapter8-Ex3-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex8.3.a');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n\tThe Apparent rate constants are \n\t Run1 %0.2f hr-1 \n\t Run2 %0.2f hr-1 ',kapp_rhob(1),kapp_rhob(2))
+mfprintf(fid,'\n\tThe exponent value = %0.1f hence the difference is not consistent with repect to equations (8.23) and (8.24)for the apparent rate constants obtained',n);
+mfprintf(fid,'\n\tThe error may be due to error in assuming a first order reaction');
+mfprintf(fid,'\n\n\n OUTPUT Ex8.3.b');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n\tThe internal effectiveness factor based on Sulphur and Hydrogen diffusion are %0.2f and %0.2f respectively',phi_app_S,phi_app_H2);
+mfprintf(fid,'\n\tThe internal effectiveness factor based on Hydrogen is negligible');
+mclose(fid);
+//============================================END OF PROGRAM=================================================
+
|