summaryrefslogtreecommitdiff
path: root/1040/CH6
diff options
context:
space:
mode:
Diffstat (limited to '1040/CH6')
-rw-r--r--1040/CH6/EX6.1.a/Chapter6_Ex1_a.sce31
-rw-r--r--1040/CH6/EX6.1.a/Chapter6_Ex1_a_Output.txt3
-rw-r--r--1040/CH6/EX6.1.b/Chapter6_Ex1_b.sce30
-rw-r--r--1040/CH6/EX6.1.b/Chapter6_Ex1_b_Output.txt3
-rw-r--r--1040/CH6/EX6.1.c/Chapter6_Ex1_c.sce32
-rw-r--r--1040/CH6/EX6.1.c/Chapter6_Ex1_c_Output.txt3
-rw-r--r--1040/CH6/EX6.1/Chapter6_Ex1.sce72
-rw-r--r--1040/CH6/EX6.2/Chapter6_Ex2.sce35
-rw-r--r--1040/CH6/EX6.3.a/Chapter6_Ex3_a.sce37
-rw-r--r--1040/CH6/EX6.3.a/Chapter6_Ex3_a_Output.txt2
-rw-r--r--1040/CH6/EX6.3.b/Chapter6_Ex3_b.sce28
-rw-r--r--1040/CH6/EX6.3.b/Chapter6_Ex3_b_Output.txt3
-rw-r--r--1040/CH6/EX6.3/Chapter6_Ex3.sce59
-rw-r--r--1040/CH6/EX6.4.a/Chapter6_Ex4_a.sce31
-rw-r--r--1040/CH6/EX6.4.a/Chapter6_Ex4_a_Output.txt2
-rw-r--r--1040/CH6/EX6.4.b/Chapter6_Ex4_b.sce41
-rw-r--r--1040/CH6/EX6.4.b/Chapter6_Ex4_b_Output.txt2
-rw-r--r--1040/CH6/EX6.4/Chapter6_Ex4.sce61
18 files changed, 475 insertions, 0 deletions
diff --git a/1040/CH6/EX6.1.a/Chapter6_Ex1_a.sce b/1040/CH6/EX6.1.a/Chapter6_Ex1_a.sce
new file mode 100644
index 000000000..6a4e827c1
--- /dev/null
+++ b/1040/CH6/EX6.1.a/Chapter6_Ex1_a.sce
@@ -0,0 +1,31 @@
+//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.1.a Pg No.236
+//Title:Power Consumption per unit volume at 300rpm
+//====================================================================================================================
+clear
+clc
+//INPUT
+D_a=0.1;
+D_t=0.3;
+H=0.3;
+N_P=5.5;
+rho=1000;
+n=5;
+S_f=6;//Scale up factor in diameter
+//CALCULATION
+P_unit_vol=(N_P*n^3*D_a^5)/(%pi*(1/4)*D_t^2*H);
+P_thousand_gal=P_unit_vol*5.067;
+t=(4/n)*(D_t/D_a)^2*(H/D_t);
+P_unit_vol_new=S_f^2*P_thousand_gal;
+
+//OUTPUT
+//Console Output
+mprintf('\n The Power consumption per unit volume at 300rpm = %.2f HP/1000 gal',P_thousand_gal);
+mprintf('\n\ The Power consumption scaling up sixfold in diameter = %.0f HP/1000 gal',P_unit_vol_new);
+
+//File Output
+fid= mopen('.\Chapter6_Ex1_a_Output.txt','w');
+mfprintf(fid,'\n The Power consumption per unit volume at 300rpm = %.2f HP/1000 gal',P_thousand_gal);
+mfprintf(fid,'\n\ The Power consumption scaling up sixfold in diameter = %.0f HP/1000 gal',P_unit_vol_new);
+mclose(fid);
+//======================================================END OF PROGRAM=================================================
diff --git a/1040/CH6/EX6.1.a/Chapter6_Ex1_a_Output.txt b/1040/CH6/EX6.1.a/Chapter6_Ex1_a_Output.txt
new file mode 100644
index 000000000..58a9f999e
--- /dev/null
+++ b/1040/CH6/EX6.1.a/Chapter6_Ex1_a_Output.txt
@@ -0,0 +1,3 @@
+
+ The Power consumption per unit volume at 300rpm = 1.64 HP/1000 gal
+ The Power consumption scaling up sixfold in diameter = 59 HP/1000 gal \ No newline at end of file
diff --git a/1040/CH6/EX6.1.b/Chapter6_Ex1_b.sce b/1040/CH6/EX6.1.b/Chapter6_Ex1_b.sce
new file mode 100644
index 000000000..ce57ebe0f
--- /dev/null
+++ b/1040/CH6/EX6.1.b/Chapter6_Ex1_b.sce
@@ -0,0 +1,30 @@
+//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.1.b Pg No.236
+//Title:Speed of stirrer and increase in blending time
+//====================================================================================================================
+clear
+clc
+//INPUT
+n=5;
+P_by_V_limit=10;//Pressure per unit volume (HP/1000gal)
+P_by_V1=59;//Pressure per unit volume from Ex6.1.a
+n1=5;
+
+//CALCULATION
+n_limit=(P_by_V_limit/P_by_V1)^(1/3) *n1;//Pressure per unit vol propotional to n3
+t_inc_factor=n1/n_limit;//t inversely propotional to n
+rotational_speed=n_limit*60;//Speed in rpm
+
+//OUTPUT
+//Console Output
+mprintf('\n The speed of the stirrer = %.2f sec-1 or %.0f rpm',n_limit,rotational_speed);
+mprintf('\n Blending time increases by factor of %.2f ',t_inc_factor);
+
+//File Output
+fid= mopen('.\Chapter6_Ex1_b_Output.txt','w');
+mfprintf(fid,'\n The speed of the stirrer = %.2f sec-1 or %.0f rpm',n_limit,rotational_speed);
+mfprintf(fid,'\n Blending time increases by factor of %.2f ',t_inc_factor);
+mclose(fid);
+//==================================================END OF PROGRAM===================================================
+
+
diff --git a/1040/CH6/EX6.1.b/Chapter6_Ex1_b_Output.txt b/1040/CH6/EX6.1.b/Chapter6_Ex1_b_Output.txt
new file mode 100644
index 000000000..8ef78b982
--- /dev/null
+++ b/1040/CH6/EX6.1.b/Chapter6_Ex1_b_Output.txt
@@ -0,0 +1,3 @@
+
+ The speed of the stirrer = 2.77 sec-1 or 166 rpm
+ Blending time increases by factor of 1.81 \ No newline at end of file
diff --git a/1040/CH6/EX6.1.c/Chapter6_Ex1_c.sce b/1040/CH6/EX6.1.c/Chapter6_Ex1_c.sce
new file mode 100644
index 000000000..60aef7524
--- /dev/null
+++ b/1040/CH6/EX6.1.c/Chapter6_Ex1_c.sce
@@ -0,0 +1,32 @@
+//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.1.c Pg No. 236
+//Title:Speed of stirrer and blending time
+//====================================================================================================================
+clear
+clc
+//INPUT
+D_a=0.1;
+D_t=0.3;
+H=0.3;
+Da_by_Dt1=D_a/D_t;
+Da_by_Dt2=0.5;
+n1=2.76;
+
+//CALCULATION
+n2=(Da_by_Dt1/Da_by_Dt2)^(5/3)*n1;
+rotaional_speed=n2*60;
+t1=4*(1/Da_by_Dt1)^2*(H/D_t)*(1/n1);
+t2=4*(1/Da_by_Dt2)^2*(H/D_t)*(1/n2);
+
+//OUTPUT
+//Console Output
+mprintf('\n The new stirrer speed = %.2f sec-1 or %.0f rpm',n2,rotaional_speed);
+mprintf('\n The new blending time for Da/Dt ratio of 0.5 = %.1f sec',t2);
+
+//File Output
+fid= mopen('.\Chapter6_Ex1_c_Output.txt','w');
+mfprintf(fid,'\n The new stirrer speed = %.2f sec-1 or %.0f rpm',n2,rotaional_speed);
+mfprintf(fid,'\n The new blending time for Da/Dt ratio of 0.5 = %.1f sec',t2);
+mclose(fid);
+//=============================================================END OF PROGRAM====================================
+// Disclaimer:The answer "11.1 sec" for new blending time given in the book is numerically incorrect. "16/1.4 = 11.4285" and not "11.1" as printed in the textbook.
diff --git a/1040/CH6/EX6.1.c/Chapter6_Ex1_c_Output.txt b/1040/CH6/EX6.1.c/Chapter6_Ex1_c_Output.txt
new file mode 100644
index 000000000..29793eec4
--- /dev/null
+++ b/1040/CH6/EX6.1.c/Chapter6_Ex1_c_Output.txt
@@ -0,0 +1,3 @@
+
+ The new stirrer speed = 1.40 sec-1 or 84 rpm
+ The new blending time for Da/Dt ratio of 0.5 = 11.4 sec \ No newline at end of file
diff --git a/1040/CH6/EX6.1/Chapter6_Ex1.sce b/1040/CH6/EX6.1/Chapter6_Ex1.sce
new file mode 100644
index 000000000..9af0bfd8e
--- /dev/null
+++ b/1040/CH6/EX6.1/Chapter6_Ex1.sce
@@ -0,0 +1,72 @@
+//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.1 Pg No.236
+//Title:Power Consumption at 300 rpm,speed of stirrer and blending time
+//====================================================================================================================
+clear
+clc
+// COMMON INPUT
+D_a=0.1;
+D_t=0.3;
+H=0.3;
+N_P=5.5;
+rho=1000;
+n=5;
+S_f=6;//Scale up factor in diameter
+P_by_V_limit=10;//Pressure per unit volume (HP/1000gal)
+n1=5;
+Da_by_Dt1=D_a/D_t;
+Da_by_Dt2=0.5;
+
+//CALCULATION (Ex6.1.a)
+P_unit_vol=(N_P*n^3*D_a^5)/(%pi*(1/4)*D_t^2*H);
+P_thousand_gal=P_unit_vol*5.067;
+t=(4/n)*(D_t/D_a)^2*(H/D_t);
+P_unit_vol_new=S_f^2*P_thousand_gal;
+
+//CALCULATION (Ex6.1.b)
+n_limit=(P_by_V_limit/P_unit_vol_new)^(1/3) *n1;//Pressure per unit vol propotional to n3
+t_inc_factor=n1/n_limit;//t inversely propotional to n
+rotational_speed=n_limit*60;//Speed in rpm
+
+//CALCULATION (Ex6.1.c)
+n2=(Da_by_Dt1/Da_by_Dt2)^(5/3)*n_limit;
+rotaional_speed=n2*60;
+t1=4*(1/Da_by_Dt1)^2*(H/D_t)*(1/n_limit);
+t2=4*(1/Da_by_Dt2)^2*(H/D_t)*(1/n2);
+
+//OUTPUT (Ex6.1.a)
+mprintf('\n OUTPUT Ex6.1.a');
+mprintf('\n==========================================================');
+mprintf('\n The Power consumption per unit volume at 300rpm = %.2f HP/1000 gal',P_thousand_gal);
+mprintf('\n\ The Power consumption scaling up sixfold in diameter = %.0f HP/1000 gal',P_unit_vol_new);
+
+
+//OUTPUT (Ex6.1.b)
+mprintf('\n\n\n OUTPUT Ex6.1.b');
+mprintf('\n==========================================================');
+mprintf('\n The speed of the stirrer = %.2f sec-1 or %.0f rpm',n_limit,rotational_speed);
+mprintf('\n Blending time increases by factor of %.2f ',t_inc_factor);
+
+//OUTPUT(Ex6.1.c)
+mprintf('\n\n\n OUTPUT Ex6.1.c');
+mprintf('\n==========================================================');
+mprintf('\n The new stirrer speed = %.2f sec-1 or %.0f rpm',n2,rotaional_speed);
+mprintf('\n The new blending time for Da/Dt ratio of 0.5 = %.1f sec',t2);
+
+//FILE OUTPUT
+fid= mopen('.\Chapter6-Ex1-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex6.1.a');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n The Power consumption per unit volume at 300rpm = %.2f HP/1000 gal',P_thousand_gal);
+mfprintf(fid,'\n\ The Power consumption scaling up sixfold in diameter = %.0f HP/1000 gal',P_unit_vol_new);
+mfprintf(fid,'\n\n\n OUTPUT Ex6.1.b');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n The speed of the stirrer = %.2f sec-1 or %.0f rpm',n_limit,rotational_speed);
+mfprintf(fid,'\n Blending time increases by factor of %.2f ',t_inc_factor);
+mfprintf(fid,'\n\n\n OUTPUT Ex6.1.c');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n The new stirrer speed = %.2f sec-1 or %.0f rpm',n2,rotaional_speed);
+mfprintf(fid,'\n The new blending time for Da/Dt ratio of 0.5 = %.1f sec',t2);
+mclose(fid);
+//======================================================END OF PROGRAM=================================================
+//Disclaimer: In Ex6.1.c there is an arithematic error in the value of D_a/D_t. The value of D_a/D_t should be 11.4 instead of the value reported in the textbook for D_a/D_t=11.1.
diff --git a/1040/CH6/EX6.2/Chapter6_Ex2.sce b/1040/CH6/EX6.2/Chapter6_Ex2.sce
new file mode 100644
index 000000000..d5e8eaf9d
--- /dev/null
+++ b/1040/CH6/EX6.2/Chapter6_Ex2.sce
@@ -0,0 +1,35 @@
+//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.2 Pg No. 239
+//Title:Effect of diffusion on conversion for laminar flow
+//============================================================================================================
+clear
+clc
+//INPUT
+D=1*10^(-2);//Diameter of pipeline (m)
+R=D/2;//Radius (m)
+D_m=10^(-4);//Diffusivity (m2/sec)
+k=1;//Reaction rate constant (sec-1)
+
+
+//CALCULATION
+alpha=D_m/(k*(R^2));//Refer topic ('Diffusion in laminar flow reactors') Pg No.239
+
+
+//OUTPUT
+if (alpha<=0.01)
+ then
+ mprintf('\n The effect of radial diffusion on conversion can be neglected as alpha = %.0f',alpha )
+else
+ mprintf('\n The effect of radial diffusion makes conversion almost as same as plug flow as alpha = %.0f',alpha)
+end
+
+//FILE OUTPUT
+fid= mopen('.\Chapter6-Ex2-Output.txt','w');
+if (alpha<=0.01)
+ then
+ mfprintf(fid,'\n The effect of radial diffusion on conversion can be neglected as alpha = %.0f',alpha )
+else
+ mfprintf(fid,'\n The effect of radial diffusion makes conversion almost as same as plug flow as alpha = %.0f',alpha)
+end
+mclose(fid);
+//================================================END OF PROGRAM========================================================
diff --git a/1040/CH6/EX6.3.a/Chapter6_Ex3_a.sce b/1040/CH6/EX6.3.a/Chapter6_Ex3_a.sce
new file mode 100644
index 000000000..1ac62cd56
--- /dev/null
+++ b/1040/CH6/EX6.3.a/Chapter6_Ex3_a.sce
@@ -0,0 +1,37 @@
+//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.3.a Pg No. 248
+//Title:Effect of Axial dispersion on conversion
+//====================================================================================================================
+clear
+clc
+//INPUT
+u=1;//Superficial velocity (cm/s)
+D=2*10^(-5)//Molecular Diffusivity(cm2/s)
+Re=30;//Reynolds No.
+Pe_a=0.25;//Peclet No. corresponding Re No. from Fig 6.10
+dp=3*(10^-1);//Particle Size (cm)
+L=48;//Length of the bed (cm)
+X_A=0.93;//Conversion
+
+//CALCULATION
+Pe_dash=Pe_a*L/dp;//Refer Pg.No.247
+one_minus_X_A=(1-X_A);
+k_rho_L_by_u1=2.65;//From Fig6.12 for given Pe_dash
+X_A1=1-exp(-k_rho_L_by_u1);
+//To increase the conversion more catalyst is needed
+k_rho_L_by_u2=2.85;//From Fig6.12
+X_A2=1-exp(-k_rho_L_by_u2);
+Percentage_excess_cat=((k_rho_L_by_u2-k_rho_L_by_u1)/k_rho_L_by_u1)*100;
+
+//OUTPUT
+//Console Output
+mprintf('\n The effect of axial dispersion is significant and the percentage excess of catalyst = %.0f%%',Percentage_excess_cat );
+
+//File Output
+fid= mopen('.\Chapter6_Ex3_a_Output.txt','w');
+mfprintf(fid,'\n The effect of axial dispersion is significant and the percentage excess of catalyst = %.0f%%',Percentage_excess_cat );
+mclose(fid);
+//==============================================END OF PROGRAM=========================================================
+
+
+
diff --git a/1040/CH6/EX6.3.a/Chapter6_Ex3_a_Output.txt b/1040/CH6/EX6.3.a/Chapter6_Ex3_a_Output.txt
new file mode 100644
index 000000000..322b8f1d8
--- /dev/null
+++ b/1040/CH6/EX6.3.a/Chapter6_Ex3_a_Output.txt
@@ -0,0 +1,2 @@
+
+ The effect of axial dispersion is significant and the percentage excess of catalyst = 8% \ No newline at end of file
diff --git a/1040/CH6/EX6.3.b/Chapter6_Ex3_b.sce b/1040/CH6/EX6.3.b/Chapter6_Ex3_b.sce
new file mode 100644
index 000000000..e6499e304
--- /dev/null
+++ b/1040/CH6/EX6.3.b/Chapter6_Ex3_b.sce
@@ -0,0 +1,28 @@
+//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.3.b Pg No. 248
+//Title:Effect of conversion on reducing the length to half
+//====================================================================================================================
+clear
+clc
+//INPUT
+L_old=48;// Old bed length (cm)
+L_new=L_old/2;//New bed length (cm)
+k_rho_L_by_u_old=2.65;//Refer Ex6.3.a
+Pe_dash_old=40;//Refer Ex6.3.a
+
+//CALCULATION
+k_rho_L_by_u_new=k_rho_L_by_u_old/2;
+X_A_cal=(1-exp(-k_rho_L_by_u_new));//Calculated conversion
+Pe_dash_new=Pe_dash_old/2;
+k_rho_L_by_u_graph=1.3992;//Value obtained from Figure6.12 for the calculated conversion
+Percentage_excess_cat=((k_rho_L_by_u_graph-k_rho_L_by_u_new)/k_rho_L_by_u_new)*100;
+
+//OUTPUT
+//Console Output
+mprintf('\n The effect of axial dispersion is less on reducing the bed length \n The percentage excess of catalyst = %.0f%%',Percentage_excess_cat );
+
+//File Output
+fid= mopen('.\Chapter6_Ex3_b_Output.txt','w');
+mfprintf(fid,'\n The effect of axial dispersion is less on reducing the bed length \n The percentage excess of catalyst = %.0f%%',Percentage_excess_cat );
+mclose(fid);
+//================================================================END OF PROGRAM==========================================
diff --git a/1040/CH6/EX6.3.b/Chapter6_Ex3_b_Output.txt b/1040/CH6/EX6.3.b/Chapter6_Ex3_b_Output.txt
new file mode 100644
index 000000000..0586c7457
--- /dev/null
+++ b/1040/CH6/EX6.3.b/Chapter6_Ex3_b_Output.txt
@@ -0,0 +1,3 @@
+
+ The effect of axial dispersion is less on reducing the bed length
+ The percentage excess of catalyst = 6% \ No newline at end of file
diff --git a/1040/CH6/EX6.3/Chapter6_Ex3.sce b/1040/CH6/EX6.3/Chapter6_Ex3.sce
new file mode 100644
index 000000000..e84f6ca10
--- /dev/null
+++ b/1040/CH6/EX6.3/Chapter6_Ex3.sce
@@ -0,0 +1,59 @@
+//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.3 Pg No. 248
+//Title:Effect of Axial dispersion and length on conversion
+//====================================================================================================================
+clear
+clc
+// COMMON INPUT
+u=1;//Superficial velocity (cm/s)
+D=2*10^(-5)//Molecular Diffusivity(cm2/s)
+Re=30;//Reynolds No.
+Pe_a=0.25;//Peclet No. corresponding Re No. from Fig 6.10
+dp=3*(10^-1);//Particle Size (cm)
+L=48;//Length of the bed (cm)
+X_A=0.93;//Conversion
+L_old=48;// Old bed length (cm)
+L_new=L_old/2;//New bed length (cm)
+
+
+
+//CALCULATION (Ex6.3.a)
+Pe_dash=Pe_a*L/dp;//Refer Pg.No.247
+one_minus_X_A=(1-X_A);
+k_rho_L_by_u1=2.65;//From Fig6.12 for given Pe_dash
+X_A1=1-exp(-k_rho_L_by_u1);
+//To increase the conversion more catalyst is needed
+k_rho_L_by_u2=2.85;//From Fig6.12
+X_A2=1-exp(-k_rho_L_by_u2);
+Percentage_excess_cat_a=((k_rho_L_by_u2-k_rho_L_by_u1)/k_rho_L_by_u1)*100;
+
+//CALCULATION(Ex6.3.b)
+k_rho_L_by_u_new=k_rho_L_by_u1/2;
+X_A_cal=(1-exp(-k_rho_L_by_u_new));//Calculated conversion
+Pe_dash_new=Pe_dash/2;
+k_rho_L_by_u_graph=1.3992;//Value obtained from Figure6.12 for the calculated conversion
+Percentage_excess_cat_b=((k_rho_L_by_u_graph-k_rho_L_by_u_new)/k_rho_L_by_u_new)*100;
+
+//OUTPUT(Ex6.3.a)
+mprintf('\n OUTPUT Ex6.3.a');
+mprintf('\n==========================================================');
+mprintf('\n The effect of axial dispersion is significant and the percentage excess of catalyst = %.0f%%',Percentage_excess_cat_a );
+
+//OUTPUT (Ex6.3.b)
+mprintf('\n\n\n OUTPUT Ex6.3.b');
+mprintf('\n==========================================================');
+mprintf('\n The effect of axial dispersion is less on reducing the bed length \n The percentage excess of catalyst = %.0f%%',Percentage_excess_cat_b );
+
+//FILE OUTPUT
+fid= mopen('.\Chapter6-Ex3-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex6.3.a');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n The effect of axial dispersion is significant and the percentage excess of catalyst = %.0f%%',Percentage_excess_cat_a );
+mfprintf(fid,'\n\n\n OUTPUT Ex6.3.b');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n The effect of axial dispersion is less on reducing the bed length \n The percentage excess of catalyst = %.0f%%',Percentage_excess_cat_b );
+mclose(fid);
+//==============================================END OF PROGRAM=========================================================
+
+
+
diff --git a/1040/CH6/EX6.4.a/Chapter6_Ex4_a.sce b/1040/CH6/EX6.4.a/Chapter6_Ex4_a.sce
new file mode 100644
index 000000000..82aee0da4
--- /dev/null
+++ b/1040/CH6/EX6.4.a/Chapter6_Ex4_a.sce
@@ -0,0 +1,31 @@
+// Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.4.a Pg No.251
+//Title:Conversion in packed bed for same superficial velocity
+//====================================================================================================================
+clear
+clc
+//INPUT
+L=2.5;//Lendth of bed(ft)
+X_A=0.95;//Conversion
+L_a=3;//Length of section a (ft)
+L_b=2;//Length of section b (ft)
+
+//CALCULATION
+k_rho_L_by_u=log(1/(1-X_A));//First Order reactions
+//For Section a
+k_rho_L_by_u_a=k_rho_L_by_u*(L_a/L);
+X_A_section_a=(1-exp(-k_rho_L_by_u_a));
+//For Section b
+k_rho_L_by_u_b=k_rho_L_by_u*(L_b/L);//Dimensionless Group based on ideal plug flow for first order reaction
+X_A_section_b=(1-exp(-k_rho_L_by_u_b));
+X_A_Ave=(X_A_section_b+X_A_section_a)/2;
+Percent_X_A_Ave=X_A_Ave*100
+
+//OUTPUT
+//Console Output
+mprintf('\n\tThe average converion when each section has same superficial velocity:%0.1f%%',Percent_X_A_Ave );
+//File Output
+fid= mopen('.\Chapter6_Ex4_a_Output.txt','w');
+mfprintf(fid,'\n\tThe average converion when each section has same superficial velocity:%0.1f%%',Percent_X_A_Ave );
+mclose(fid);
+//=======================================================END OF PROGRAM=================================================
diff --git a/1040/CH6/EX6.4.a/Chapter6_Ex4_a_Output.txt b/1040/CH6/EX6.4.a/Chapter6_Ex4_a_Output.txt
new file mode 100644
index 000000000..f7971f665
--- /dev/null
+++ b/1040/CH6/EX6.4.a/Chapter6_Ex4_a_Output.txt
@@ -0,0 +1,2 @@
+
+ The average converion when each section has same superficial velocity:94.1% \ No newline at end of file
diff --git a/1040/CH6/EX6.4.b/Chapter6_Ex4_b.sce b/1040/CH6/EX6.4.b/Chapter6_Ex4_b.sce
new file mode 100644
index 000000000..47bc5b825
--- /dev/null
+++ b/1040/CH6/EX6.4.b/Chapter6_Ex4_b.sce
@@ -0,0 +1,41 @@
+// Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.4.b Pg No.251
+//Title:Overall conversion for different velocities
+//====================================================================================================================
+clear
+clc
+//INPUT
+u_oa_by_u0=0.88;//Refer equation 3.64
+u_ob_by_u0=1.12;
+X_A=0.95;//Conversion
+L=2.5;//(ft)
+L_a=3;//Length of section a (ft)
+L_b=2;//Length of section b (ft)
+
+//CALCULATION
+k_rho_L_by_u=log(1/(1-X_A));//First Order reaction
+//For Section a
+k_rho_L_by_u_a=k_rho_L_by_u*(L_a/L)*(1/u_oa_by_u0);
+X_A_section_a=(1-exp(-k_rho_L_by_u_a));
+delP_a_by_alpha_u0_pow=L_a*(u_oa_by_u0);//Refer equation 3.64
+
+//For Section b
+k_rho_L_by_u_b=k_rho_L_by_u*(L_b/L)*(1/u_ob_by_u0);//Dimensionless Group based on ideal plug flow for first order reaction
+delP_b_by_alpha_u0_pow=L_b*u_ob_by_u0;
+X_A_section_b=(1-exp(-k_rho_L_by_u_b));
+X_A_avg=(u_oa_by_u0*X_A_section_a+u_ob_by_u0*X_A_section_b)/2;
+Percent_X_A_avg=X_A_avg*100;
+
+//OUTPUT
+//Console Output
+mprintf('\nThe overall conversion for different velocities:%0.1f%% ',Percent_X_A_avg );
+
+//File Output
+fid= mopen('.\Chapter6_Ex4_b_Output.txt','w');
+mfprintf(fid,'\nThe overall conversion for different velocities:%0.1f%% ',Percent_X_A_avg );
+mclose(fid);
+//==================================================END OF PROGRAM======================================================
+
+
+
+
diff --git a/1040/CH6/EX6.4.b/Chapter6_Ex4_b_Output.txt b/1040/CH6/EX6.4.b/Chapter6_Ex4_b_Output.txt
new file mode 100644
index 000000000..7ce7357ee
--- /dev/null
+++ b/1040/CH6/EX6.4.b/Chapter6_Ex4_b_Output.txt
@@ -0,0 +1,2 @@
+
+The overall conversion for different velocities:92.7% \ No newline at end of file
diff --git a/1040/CH6/EX6.4/Chapter6_Ex4.sce b/1040/CH6/EX6.4/Chapter6_Ex4.sce
new file mode 100644
index 000000000..86305a9f6
--- /dev/null
+++ b/1040/CH6/EX6.4/Chapter6_Ex4.sce
@@ -0,0 +1,61 @@
+// Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.4 Pg No.251
+//Title:Conversion in packed bed for same superficial velocity
+//====================================================================================================================
+clear
+clc
+//COMMON INPUT
+L=2.5;//Lendth of bed(ft)
+X_A=0.95;//Conversion
+L_a=3;//Length of section a (ft)
+L_b=2;//Length of section b (ft)
+u_oa_by_u0=0.88;//Refer equation 3.64
+u_ob_by_u0=1.12;
+L=2.5;//(ft)
+
+
+//CALCULATION (Ex6.4.a)
+k_rho_L_by_u=log(1/(1-X_A));//First Order reactions
+//For Section a
+k_rho_L_by_u_a=k_rho_L_by_u*(L_a/L);
+X_A_section_a=(1-exp(-k_rho_L_by_u_a));
+//For Section b
+k_rho_L_by_u_b=k_rho_L_by_u*(L_b/L);//Dimensionless Group based on ideal plug flow for first order reaction
+X_A_section_b=(1-exp(-k_rho_L_by_u_b));
+X_A_Ave=(X_A_section_b+X_A_section_a)/2;
+Percent_X_A_Ave=X_A_Ave*100
+
+//CALCULATION (Ex6.4.b)
+k_rho_L_by_u=log(1/(1-X_A));//First Order reaction
+//For Section a
+k_rho_L_by_u_a=k_rho_L_by_u*(L_a/L)*(1/u_oa_by_u0);
+X_A_section_a=(1-exp(-k_rho_L_by_u_a));
+delP_a_by_alpha_u0_pow=L_a*(u_oa_by_u0);//Refer equation 3.64
+
+//For Section b
+k_rho_L_by_u_b=k_rho_L_by_u*(L_b/L)*(1/u_ob_by_u0);//Dimensionless Group based on ideal plug flow for first order reaction
+delP_b_by_alpha_u0_pow=L_b*u_ob_by_u0;
+X_A_section_b=(1-exp(-k_rho_L_by_u_b));
+X_A_avg=(u_oa_by_u0*X_A_section_a+u_ob_by_u0*X_A_section_b)/2;
+Percent_X_A_avg=X_A_avg*100;
+
+//OUTPUT(Ex6.4.a)
+mprintf('\n OUTPUT Ex6.4.a');
+mprintf('\n==========================================================');
+mprintf('\nThe average converion when each section has same superficial velocity:%0.1f%%',Percent_X_A_Ave );
+
+//OUTPUT(Ex6.4.b)
+mprintf('\n\n\n OUTPUT Ex6.4.b');
+mprintf('\n==========================================================');
+mprintf('\nThe overall conversion for different velocities:%0.1f%% ',Percent_X_A_avg );
+
+//FILE OUTPUT
+fid= mopen('.\Chapter6-Ex4-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex6.4.a');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\nThe average converion when each section has same superficial velocity:%0.1f%%',Percent_X_A_Ave );
+mfprintf(fid,'\n\n\n OUTPUT Ex6.4.b');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\nThe overall conversion for different velocities:%0.1f%% ',Percent_X_A_avg );
+mclose(fid);
+//=======================================================END OF PROGRAM=================================================