summaryrefslogtreecommitdiff
path: root/1040/CH5/EX5.3.b/Chapter5_Ex3_b.sce
diff options
context:
space:
mode:
Diffstat (limited to '1040/CH5/EX5.3.b/Chapter5_Ex3_b.sce')
-rw-r--r--1040/CH5/EX5.3.b/Chapter5_Ex3_b.sce74
1 files changed, 74 insertions, 0 deletions
diff --git a/1040/CH5/EX5.3.b/Chapter5_Ex3_b.sce b/1040/CH5/EX5.3.b/Chapter5_Ex3_b.sce
new file mode 100644
index 000000000..fe0def374
--- /dev/null
+++ b/1040/CH5/EX5.3.b/Chapter5_Ex3_b.sce
@@ -0,0 +1,74 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436.
+//Chapter-5 Ex5.3.b Pg No. 209
+//Title:Peak Radial average bed temperature for velocities
+//===========================================================================================================
+clear
+clc
+format(16)
+//INPUT
+k_s= 8*10^(-4);//(cal/sec cm°C)
+M_air_avg=29.24;//
+Cp_air_mol=7.91;// cal/mol°C;
+Cp_air_g=Cp_air_mol/M_air_avg;//cal/g°C
+dp=0.4;//Size of the catalyst pellet (cm)
+D=3.8;//Diameter of tube (cm)
+R_pellet=D/2;//Radius
+f_EO=0.7;//Fraction of ethylene forming ethylene oxide
+f_CO2_H2O=1-f_EO;//Fraction of ethylene forming CO2 and H2O
+rho_p=2.5;//Density of catalyst particle (g/cm3)
+P=5;//System Pressure (atm)
+T_C=230;//System Temperature (°C)
+T=T_C+273;//System Temperature (K)
+u_ft=[1.5 3];//Velocity (ft/s)
+myu=0.026*(10^(-2));//Viscosity of air (Poise)
+M_wt=[28 32 44 28];//Molecular weight
+M_fraction=[0.04 0.07 0.06 0.83];
+del_H_rxn=[-29.9 -317];//Heat of reaction(kcal/mol)
+E=18*1000;//Activation Energy (cal)
+R=1.987;//Gas Constant (cal/K.mol)
+U=[0.00275 0.00431 ];//Overall heat transfer coefficients calculated in Ex5.3.a
+
+//CALCULATION
+minus_delH=f_EO*(-del_H_rxn(1))+f_CO2_H2O*(-del_H_rxn(2));
+T_max=T+20;
+del_Tc= R*(T_max)^2/E;
+T_new=250 +273;
+X_E=0.1;
+k250_by_k230=exp((E/R)*((1/T)-(1/T_new)));
+P_E=P*(1-X_E)*M_fraction(1);
+P_O2=P*(1-f_EO*X_E)*M_fraction(2);
+P_CO2=P*(1+f_CO2_H2O*X_E)*M_fraction(3);
+r=k250_by_k230*((0.076*P_E*P_O2)/(1+2*P_E+15*P_CO2));
+Q_dash=r*minus_delH*10^3/3600;
+epsilon=0.4;
+rho_bed=rho_p*(1-0.4);
+A_percm3=4/D;
+Q=(Q_dash*rho_bed)
+for i=1:2
+ delta_T(i)=(Q/A_percm3)*(1/U(i));
+end
+
+//OUTPUT
+//Console Output
+mprintf('\nThe Peak Radial average bed temperature for given Velocities' )
+mprintf('\n==========================================================')
+mprintf('\n u(velocity) delta_T')
+mprintf('\n (ft/s) (°C)')
+mprintf('\n==========================================================')
+for i=1:2
+ mprintf('\n %0.1f \t \t %0.0f',u_ft(i),delta_T(i))
+end
+
+//File Output
+fid= mopen('.\Chapter5_Ex3_b_Output.txt','w');
+mfprintf(fid,'\nThe Peak Radial average bed temperature for given Velocities' );
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n u(velocity) delta_T');
+mfprintf(fid,'\n (ft/s) (°C)');
+mfprintf(fid,'\n==========================================================');
+for i=1:2
+ mfprintf(fid,'\n %0.1f \t \t %0.0f',u_ft(i),delta_T(i));
+end
+mclose(fid);
+//======================================================END OF PROGRAM========================================
+