summaryrefslogtreecommitdiff
path: root/1040/CH5/EX5.3.a/Chapter5_Ex3_a.sce
diff options
context:
space:
mode:
Diffstat (limited to '1040/CH5/EX5.3.a/Chapter5_Ex3_a.sce')
-rw-r--r--1040/CH5/EX5.3.a/Chapter5_Ex3_a.sce73
1 files changed, 73 insertions, 0 deletions
diff --git a/1040/CH5/EX5.3.a/Chapter5_Ex3_a.sce b/1040/CH5/EX5.3.a/Chapter5_Ex3_a.sce
new file mode 100644
index 000000000..5f57a8f8a
--- /dev/null
+++ b/1040/CH5/EX5.3.a/Chapter5_Ex3_a.sce
@@ -0,0 +1,73 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436.
+//Chapter-5 Ex5.3.a Pg No. 209
+//Title:Overall heat transfer coefficients for packed bed reactor
+//=============================================================================================================
+clear
+clc
+
+//INPUT
+k_s= 8*10^(-4);//(cal/sec cm°C)
+M_air_avg=29.24;// Average Molecular weight of air
+Cp_air_mol=7.91;// cal/mol°C;
+Cp_air_g=Cp_air_mol/M_air_avg;//cal/g°C
+dp=0.4;//Size of the catalyst pellet (cm)
+D=3.8;//Diameter of tube (cm)
+R_pellet=D/2;//Radius
+V_ref=22400;//Reference volume(cm3)
+T_ref=273;// Reference Temperature (K)
+P_ref=1;//Reference Pressure (atm)
+P=5;//System Pressure (atm)
+T_C=230;//System Temperature (°C)
+T=T_C+273;//System Temperature (K)
+u_ft=[1.5 3];//Velocity (ft/s)
+myu=0.026*(10^(-2));//Viscosity of air (Poise)
+M_wt=[28 32 44 28];//Molecular weight
+M_fraction=[0.04 0.07 0.06 0.83];
+Cp=[15.3 7.4 10.7 7.4];//(cal/mol°C)
+k_g=9.27*10^(-5);//(cal/sec cm°C)
+del_H_rxn=[-29.9 -317];//(kcal/mol)
+
+//CALCULATION
+rho=M_air_avg*P*T_ref/(V_ref*P_ref*T);
+u=30.533.*u_ft;//Velocity in (cm/s)
+Re_p=(rho*dp/myu).*u;
+Pr=Cp_air_g*myu/k_g;
+ks_by_kg=k_s/k_g;
+k0e_by_kg=3.5;//From figure 5.16 Pg. No. 203
+kr_by_kg=2.5;//From equation 5.68 and 5.69 Pg. No. 204
+for i=1:2
+ ktd_by_k_air(i)=(0.1*Pr)*Re_p(i);
+ke_by_kg(i)=(k0e_by_kg+kr_by_kg)+ktd_by_k_air(i);
+k_e(i)=ke_by_kg(i)*k_g;
+h_bed(i)=4*k_e(i)/R_pellet;
+Nu_w(i)=(1.94*Pr^(0.33))*Re_p(i)^(0.5);//Refer equation 5.83 Pg. No. 208
+h_w(i)=(k_g/dp)*Nu_w(i);//(cal/sec cm2 K)
+h_j=100*10^(-3);//Assumed
+ U(i)=1/((1/h_j)+(1/h_w(i))+(1/h_bed(i)));
+end
+
+//OUTPUT
+// Console Output
+mprintf('\nThe Overall Heat transfer coefficient for given Velocities' )
+mprintf('\n==========================================================')
+mprintf('\n u(velocity) U')
+mprintf('\n (ft/s) (cal/cm2 sec K)')
+mprintf('\n==========================================================')
+for i=1:2
+ mprintf('\n %0.2f %f',u_ft(i),U(i))
+end
+
+//File Output
+fid= mopen('.\Chapter5_Ex3_a_Output.txt','w');
+mfprintf(fid,'\nThe Overall Heat transfer coefficient for given Velocities' )
+mfprintf(fid,'\n==========================================================')
+mfprintf(fid,'\n u(velocity) U')
+mfprintf(fid,'\n (ft/s) (cal/cm2 sec K)')
+mfprintf(fid,'\n==========================================================')
+for i=1:2
+ mfprintf(fid,'\n %0.2f %f',u_ft(i),U(i))
+end
+mclose(fid);
+//===============================================END OF PROGRAM=======================================================
+
+