summaryrefslogtreecommitdiff
path: root/1040/CH4/EX4.1
diff options
context:
space:
mode:
Diffstat (limited to '1040/CH4/EX4.1')
-rw-r--r--1040/CH4/EX4.1/Chapter4_Ex1_Output.txt12
-rw-r--r--1040/CH4/EX4.1/Ex4_1.sce72
2 files changed, 84 insertions, 0 deletions
diff --git a/1040/CH4/EX4.1/Chapter4_Ex1_Output.txt b/1040/CH4/EX4.1/Chapter4_Ex1_Output.txt
new file mode 100644
index 000000000..5a90c0692
--- /dev/null
+++ b/1040/CH4/EX4.1/Chapter4_Ex1_Output.txt
@@ -0,0 +1,12 @@
+
+ OUTPUT Ex4.1.a
+=================================================
+The predicted diffusivity of Chlorine is 2.17e-03 cm2/s
+
+ OUTPUT Ex4.1.b
+=================================================
+The tortusity value = 1.25
+
+ OUTPUT Ex4.1.b
+=================================================
+The Effective diffusivity of Chlorine at 573 K and 15 atm = 1.83e-09 cm2/sec \ No newline at end of file
diff --git a/1040/CH4/EX4.1/Ex4_1.sce b/1040/CH4/EX4.1/Ex4_1.sce
new file mode 100644
index 000000000..e00945102
--- /dev/null
+++ b/1040/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,72 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-4 Ex4.1 Pg No. 135
+//Title:Diffusivity of Chlorine and tortuosity in catalyst pellet
+//===========================================================================================================
+clear
+clc
+
+// COMMON INPUT
+S_g=235;//Total surface per gram (m2/g)
+V_g=0.29E-6;//Pore volume per gram (cm3/g)
+rho_p=1.41;//Density of particle (g/cm3)
+D_He=0.0065;//Effective diffusivity of He (cm2/sec)
+D_AB=0.73;// at 1atm and 298K
+M_He=4;//Molecular weight of He
+M_Cl2=70.09;//Molecular weight of Cl2
+T_ref=293;//Reference temperature
+T_degC=300;
+T_01=T_degC+273;//Reaction temperature(K) (Ex4.1.a)
+T_02=298;//Operating temperature (Ex4.1.b)
+T_03=573;//operating temperature (Ex4.1.c)
+P_ref=1;//Reference pressure
+D_Cl2_CH4=0.15;//at 1atm 273K
+P=15;//operating pressure
+//tau=1.25;//From value calculated in Ex4.1.b Pg. No. 136
+
+
+//CALCULATION (Ex4.1.a)
+r_bar=2*V_g/S_g;//Mean Pore radius
+D_Cl2_Ex_a=D_He*((M_He/M_Cl2)*(T_01/T_ref))^(0.5);//Assuming Knudsen flow at 573K
+
+//CALCULATION (Ex4.1.b)
+r_bar=2*V_g*(10^6)/(S_g *(10^4));
+D_K=9700*(r_bar)*(T_ref/M_He)^(0.5);//Knudsen flow
+D_AB1=D_AB*(293/298)^(1.7)// at 1.5 atm and 293K
+D_pore=1/((1/D_K)+(1/D_AB1));//pore diffusion
+Epsilon=V_g*rho_p*(10^6);
+tau=(D_pore*Epsilon)/D_He;//Tortusity
+
+//CALCULATION (Ex4.1.c)
+D_Cl2_CH4_new=D_Cl2_CH4*(P_ref/P)*(T_03/T_ref)^(1.7);
+D_K_Cl2=9700*r_bar*sqrt(T_03/M_Cl2);
+D_pore=1/((1/D_Cl2_CH4_new)+(1/D_K_Cl2));
+Epsilon=V_g*rho_p;
+D_Cl2_Ex_c=D_pore*Epsilon/tau;
+
+
+//OUTPUT
+mprintf('\n OUTPUT Ex4.1.a');
+mprintf('\n=================================================');
+mprintf('\nThe predicted diffusivity of Chlorine is %0.2e cm2/s ',D_Cl2_Ex_a);
+mprintf('\n\n OUTPUT Ex4.1.b');
+mprintf('\n=================================================');
+mprintf('\nThe tortusity value = %0.2f',tau);
+mprintf('\n\n OUTPUT Ex4.1.b');
+mprintf('\n=================================================')
+mprintf('\nThe Effective diffusivity of Chlorine at %g K and %g atm = %0.2e cm2/sec ',T_03, P, D_Cl2_Ex_c);
+
+//FILE OUTPUT
+fid= mopen('.\Chapter4-Ex1-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex4.1.a');
+mfprintf(fid,'\n=================================================');
+mfprintf(fid,'\nThe predicted diffusivity of Chlorine is %0.2e cm2/s ',D_Cl2_Ex_a);
+mfprintf(fid,'\n\n OUTPUT Ex4.1.b');
+mfprintf(fid,'\n=================================================');
+mfprintf(fid,'\nThe tortusity value = %0.2f',tau);
+mfprintf(fid,'\n\n OUTPUT Ex4.1.b');
+mfprintf(fid,'\n=================================================')
+mfprintf(fid,'\nThe Effective diffusivity of Chlorine at %g K and %g atm = %0.2e cm2/sec ',T_03, P, D_Cl2_Ex_c);
+mclose(fid)
+//============================================END OF PROGRAM=================================================
+
+