summaryrefslogtreecommitdiff
path: root/1040/CH3
diff options
context:
space:
mode:
Diffstat (limited to '1040/CH3')
-rw-r--r--1040/CH3/EX3.1/Chapter3_Ex1_Output.txt2
-rw-r--r--1040/CH3/EX3.1/Ex3_1.sce27
-rw-r--r--1040/CH3/EX3.2/Chapter3_Ex2_Output.txt15
-rw-r--r--1040/CH3/EX3.2/Ex3_2.sce62
-rw-r--r--1040/CH3/EX3.3/Chapter3_Ex3_Output.txt15
-rw-r--r--1040/CH3/EX3.3/Ex3_3.sce66
-rw-r--r--1040/CH3/EX3.4/Chapter3_Ex4_Output.txt2
-rw-r--r--1040/CH3/EX3.4/Ex3_4.sce33
-rw-r--r--1040/CH3/EX3.5/Chapter3_Ex5_Output.txt15
-rw-r--r--1040/CH3/EX3.5/Chapter3_Ex5_Plot_1.pdfbin0 -> 39475 bytes
-rw-r--r--1040/CH3/EX3.5/Ex3_5.sce92
-rw-r--r--1040/CH3/EX3.6/Chapter3_Ex6_Output.txt5
-rw-r--r--1040/CH3/EX3.6/Ex3_6.sce36
-rw-r--r--1040/CH3/EX3.7/Chapter3_Ex7_Output.txt30
-rw-r--r--1040/CH3/EX3.7/Chapter3_Ex7_Plot_1.pdfbin0 -> 37678 bytes
-rw-r--r--1040/CH3/EX3.7/Ex3_7.sce125
16 files changed, 525 insertions, 0 deletions
diff --git a/1040/CH3/EX3.1/Chapter3_Ex1_Output.txt b/1040/CH3/EX3.1/Chapter3_Ex1_Output.txt
new file mode 100644
index 000000000..aaac05809
--- /dev/null
+++ b/1040/CH3/EX3.1/Chapter3_Ex1_Output.txt
@@ -0,0 +1,2 @@
+
+Time required to achieve required conversion for 5% excess of B= 3.842185 hr \ No newline at end of file
diff --git a/1040/CH3/EX3.1/Ex3_1.sce b/1040/CH3/EX3.1/Ex3_1.sce
new file mode 100644
index 000000000..fa16b2c9b
--- /dev/null
+++ b/1040/CH3/EX3.1/Ex3_1.sce
@@ -0,0 +1,27 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-1 Ex3.1 Pg No.84
+//Title:Time to reach desired conversion for bimolecular batch reaction
+//========================================================================================
+clear
+clc
+//INPUT
+C_A0=1;//Assuming 1mol basis for the limiting reactant
+C_B0_old=1.02;//2% Excess of reactant B is supplied
+R_old=C_B0_old/C_A0;//Refer equation 3.7 Pg No.
+X_A=0.995;// Conversion interms of limiting reactant
+t_old=6.5;//Time required for the given conversion (hr)
+C_B0_new=1.05;//5% Excess of reactant B
+R_new=C_B0_new/C_A0;//Refer equation 3.7 Pg No.83
+
+//CALCULATION
+k=(log((R_old-X_A)/(R_old*(1-X_A)))/((R_old-1)*t_old *C_A0));
+t_new=log((R_new-X_A)/(R_new*(1-X_A)))/((R_new-1)*k*C_A0);
+
+//OUTPUT
+mprintf('\nTime required to achieve required conversion for 5%% excess of B= %f hr',t_new);
+
+//FILE OUTPUT
+fid=mopen('.\Chapter3-Ex1-Output.txt','w');
+mfprintf(fid,'\nTime required to achieve required conversion for 5%% excess of B= %f hr',t_new);
+mclose(fid);
+//=================================================END OF PROGRAM==================================
diff --git a/1040/CH3/EX3.2/Chapter3_Ex2_Output.txt b/1040/CH3/EX3.2/Chapter3_Ex2_Output.txt
new file mode 100644
index 000000000..8d876498a
--- /dev/null
+++ b/1040/CH3/EX3.2/Chapter3_Ex2_Output.txt
@@ -0,0 +1,15 @@
+
+ OUTPUT Ex3.2.a
+==================================================================
+The total residence time of the four reactors in series= 8.930645 hr
+==================================================================
+Reactor vessel Conversion Fraction of total heat released
+
+==================================================================
+ 1 0.527 0.555
+
+ 2 0.776 0.262
+
+ 3 0.894 0.124
+
+ 4 0.950 0.059
diff --git a/1040/CH3/EX3.2/Ex3_2.sce b/1040/CH3/EX3.2/Ex3_2.sce
new file mode 100644
index 000000000..4686ddaea
--- /dev/null
+++ b/1040/CH3/EX3.2/Ex3_2.sce
@@ -0,0 +1,62 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-3 Ex3.2 Pg No. 96
+//Title:Residence time and heat generation for four STR's in series
+//========================================================================================
+clear
+clc
+// COMMON INPUT
+X_A=0.95;//Given conversion
+t_batch=6;//Batch time to reach the desired conversion
+N=4//No.of reactors in series
+X_final=X_A;
+
+//CALCULATION (Ex3.2.a)
+k=log((1/(1-X_A)))/t_batch;//Refer equation 3.29 Pg No. 90
+t_1=((1/(1-X_A))^(1/N)-1)/k;//Refer equation 3.40 Pg No. 94
+t_Tot=N*t_1;
+
+//OUTPUT (Ex3.2.a)
+mprintf('\n OUTPUT Ex3.2.a');
+mprintf('\n==================================================================');
+mprintf('\nThe total residence time of the four reactors in series= %f hr',t_Tot);
+
+//=======================================================================================
+
+//Title:Heat generation in CSTR in Series
+//=============================================================================================================
+//CALCULATION (Ex3.2.b)
+t_1=((1/(1-X_final))^(1/N)-1)/k;//Refer equation 3.40 Pg No. 94
+for i=1:N
+ X(i)=1-(1/(1+k*t_1)^(i));
+end
+
+delQ_by_Q(1)=(X(1))/X_final; // Ratio of heat generated in 1st reactor
+for i=1:N-1
+ delQ_by_Q(i+1)=(X(i+1)-X(i))/X_final; // Ratio of heat generated in 2nd, 3rd and 4th reactors
+end
+
+//OUTPUT (Ex3.2.b)
+mprintf('\n========================================================================================\n')
+mprintf('\n OUTPUT Ex3.2.b');
+mprintf('\n==================================================================');
+mprintf('\nReactor vessel \t Conversion \t Fraction of total heat released \n')
+mprintf('\n==================================================================')
+for i=1:N
+ mprintf('\n %d \t \t %0.3f \t \t \t %0.3f \n',i,X(i),delQ_by_Q(i))
+end
+
+//FILE OUTPUT
+fid=mopen('.\Chapter3-Ex2-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex3.2.a');
+mfprintf(fid,'\n==================================================================');
+mfprintf(fid,'\nThe total residence time of the four reactors in series= %f hr',t_Tot);
+ mfprintf(fid,'\n==================================================================')
+ mfprintf(fid,'\nReactor vessel \t Conversion \t Fraction of total heat released \n')
+ mfprintf(fid,'\n==================================================================')
+for i=1:N
+ mfprintf(fid,'\n %d \t \t %0.3f \t \t \t %0.3f \n',i,X(i),delQ_by_Q(i))
+end
+mclose(fid);
+
+
+//=============================================================END OF PROGRAM================================
diff --git a/1040/CH3/EX3.3/Chapter3_Ex3_Output.txt b/1040/CH3/EX3.3/Chapter3_Ex3_Output.txt
new file mode 100644
index 000000000..66f0546e5
--- /dev/null
+++ b/1040/CH3/EX3.3/Chapter3_Ex3_Output.txt
@@ -0,0 +1,15 @@
+=======================================
+ T X_A S Y
+ K (-) (-) (-)
+======================================
+ 350 0.880 0.920 0.810
+ 355 0.909 0.913 0.830
+ 360 0.931 0.905 0.843
+ 365 0.948 0.896 0.849
+ 370 0.961 0.887 0.852
+ 375 0.970 0.878 0.851
+ 380 0.977 0.868 0.848
+
+The maximum value of yield is 0.852042
+
+High yield is obtained between 365K to 375K \ No newline at end of file
diff --git a/1040/CH3/EX3.3/Ex3_3.sce b/1040/CH3/EX3.3/Ex3_3.sce
new file mode 100644
index 000000000..5c6d5ae52
--- /dev/null
+++ b/1040/CH3/EX3.3/Ex3_3.sce
@@ -0,0 +1,66 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-3 Ex3.3 Pg No. 97
+//Title:Effect of temperature on yield
+//================================================================================================================
+clear
+clc
+//INPUT
+C_A0=1;//Initial concentration of A
+C_B0=5;//Initial concentration of B
+E1=15;//Activation energy for first reaction(kcal)
+E2=20;//Activation energy for second reaction(kcal)
+X_A=0.88;// Total conversion of reactant A
+Y=0.81;//Yield for the reaction to produce C
+R=1.987;//Gas Constant(cal/K^-1 mol^-1)
+T_0=350;//Temperature (K)
+
+//CALCULATION
+//Assuming first order by taking concentration of B constant since B is in Excess
+C_A= C_A0*(1-X_A);//Unreacted amount of A
+C_B=C_B0-Y;//Unreacted amount of B
+k1_plus_k2_t=(X_A/(1-X_A));
+S=Y/X_A;//At 350K
+k1_by_k2=11.57;
+k1_plus_k2_by_k2=k1_by_k2+1;//Refer Ex3.3 for the coded equations
+k2_t=k1_plus_k2_t/k1_plus_k2_by_k2;
+k1_t=k1_plus_k2_t-k2_t;
+T=345;
+for i=1:7
+T=T+5;
+Temp(i)=T;
+k1_dash_t(i)=k1_t*exp(((E1*1000/R)*((1/T_0)-(1/T))));//Arrhenius law
+k2_dash_t(i)=k2_t*exp(((E2*1000/R)*((1/T_0)-(1/T))));//Arrhenius law
+k1_plus_k2_t_new(i)=k1_dash_t(i)+k2_dash_t(i);
+X_A_new(i)=k1_plus_k2_t_new(i)/(1+k1_plus_k2_t_new(i));
+S_new(i)=((k1_dash_t(i)/k2_dash_t(i))/(1+(k1_dash_t(i)/k2_dash_t(i))));
+Y_new(i)=S_new(i)*X_A_new(i);
+end
+
+//OUTPUT
+mprintf('=======================================');
+mprintf('\n\t T \t X_A \t S \t Y');
+mprintf('\n\t K \t (-) \t (-) \t (-)');
+mprintf('\n======================================');
+for i=1:7
+ mprintf('\n\t %d \t %0.3f \t %0.3f \t %0.3f',Temp(i),X_A_new(i),S_new(i),Y_new(i));
+end
+ maximum=max(Y_new);
+ mprintf('\n\t\nThe maximum value of yield is %f ',maximum);
+ mprintf('\n\t\nHigh yield is obtained between 365K to 375K');
+
+//FILE OUTPUT
+fid=mopen('.\Chapter3-Ex3-Output.txt','w');
+mfprintf(fid,'=======================================');
+mfprintf(fid,'\n\t T \t X_A \t S \t Y');
+mfprintf(fid,'\n\t K \t (-) \t (-) \t (-)');
+mfprintf(fid,'\n======================================');
+for i=1:7
+ mfprintf(fid,'\n\t %d \t %0.3f \t %0.3f \t %0.3f',Temp(i),X_A_new(i),S_new(i),Y_new(i));
+end
+ maximum=max(Y_new);
+ mfprintf(fid,'\n\t\nThe maximum value of yield is %f ',maximum);
+ mfprintf(fid,'\n\t\nHigh yield is obtained between 365K to 375K');
+ mclose(fid);
+//======================================================END OF PROGRAM===================================================
+//Disclaimer:Refer Ex3.3 in the textbook The Arrhenius law equation has a typo error. Exponential term missing in the textbook
+
diff --git a/1040/CH3/EX3.4/Chapter3_Ex4_Output.txt b/1040/CH3/EX3.4/Chapter3_Ex4_Output.txt
new file mode 100644
index 000000000..398d915eb
--- /dev/null
+++ b/1040/CH3/EX3.4/Chapter3_Ex4_Output.txt
@@ -0,0 +1,2 @@
+
+ The Volume of the reactor required for the given conversion is 1235 cm3 or 1.24 liters \ No newline at end of file
diff --git a/1040/CH3/EX3.4/Ex3_4.sce b/1040/CH3/EX3.4/Ex3_4.sce
new file mode 100644
index 000000000..a4028847d
--- /dev/null
+++ b/1040/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,33 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-3 Ex3.4 Pg No. 101
+//Title:Volume of reactor for Gas Phase isothermal reaction
+//==================================================================================================================
+clear
+clc
+//INPUT
+//First Order Reaction
+//Basis: 1mol of feed
+k=0.45;//Rate constant of first order reaction(s-1)
+v0=120;//Volumetric flow rate(cm3/s)
+C_A0=0.8;//Initial amount of reactant A (mol)
+X_A=0.95;//Conversion in terms of reactant A
+C_inert=0.2;//Concentration of inert (Nitrogen)in feed
+
+//CALCULATION
+E_A=((2*C_A0+C_inert)-(C_A0+C_inert))/(C_A0+C_inert);//Volume fraction
+Tot_mol=(C_A0+C_inert)+(E_A);//Total No. of moles
+V=v0*((-(E_A)*X_A)+Tot_mol*(log(1/(1-X_A))))/(k);//Refer Performance Equation equation 3.44 and 3.42 in Pg No. 100
+V_l=V*10^-3;//Volume of reactor in liters
+
+//OUTPUT
+mprintf('\n\tThe Volume of the reactor required for the given conversion is %.0f cm3 or %0.2f liters',V,V_l);
+
+//FILE OUTPUT
+fid= mopen('.\Chapter3-Ex4-Output.txt','w');
+mfprintf(fid,'\n\tThe Volume of the reactor required for the given conversion is %.0f cm3 or %0.2f liters',V,V_l);
+mclose(fid);
+//==============================================================END OF PROGRAM==========================================
+
+
+
+
diff --git a/1040/CH3/EX3.5/Chapter3_Ex5_Output.txt b/1040/CH3/EX3.5/Chapter3_Ex5_Output.txt
new file mode 100644
index 000000000..4402bbf8c
--- /dev/null
+++ b/1040/CH3/EX3.5/Chapter3_Ex5_Output.txt
@@ -0,0 +1,15 @@
+
+ OUTPUT Ex3.5.1
+The rate equation for Eley-Ridely Mechanism is:
+ r= 773C_A C_B/(1+2.57C_A)
+=================================================
+
+ OUTPUT Ex3.5.2
+ Predicted and Experimental Conversion Values
+=================================================
+10^3/WHSV X_experimental X_predicted
+=================================================
+ 4.00 0.16 0.18
+ 8.20 0.31 0.34
+ 17.00 0.40 0.59
+ 39.00 0.75 0.88 \ No newline at end of file
diff --git a/1040/CH3/EX3.5/Chapter3_Ex5_Plot_1.pdf b/1040/CH3/EX3.5/Chapter3_Ex5_Plot_1.pdf
new file mode 100644
index 000000000..6804a544a
--- /dev/null
+++ b/1040/CH3/EX3.5/Chapter3_Ex5_Plot_1.pdf
Binary files differ
diff --git a/1040/CH3/EX3.5/Ex3_5.sce b/1040/CH3/EX3.5/Ex3_5.sce
new file mode 100644
index 000000000..6e81ca290
--- /dev/null
+++ b/1040/CH3/EX3.5/Ex3_5.sce
@@ -0,0 +1,92 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-3 Ex3.5 Pg No. 104
+//Title: Rate Equation to fit Initial Rate data
+//==========================================================================================================
+clear
+clc
+clf()
+//INPUT (Ex3.5.1)
+//Initial Rate Data
+B_by_A= [5 7 10 20 37];//B/A Mol Ratio
+r_0=[75 65 50 33 18];//Rate (mol/hr g)
+
+//CALCULATION (Ex3.5.1)
+//Assuming Eley Rideal Mechanism for the benzene alkylation with propylene
+for i=1:5
+ C_B(i)= (B_by_A(i)/(1+B_by_A(i)));//In terms of Mol Fraaction
+ C_A(i)= (1/(1+B_by_A(i)));
+ CA_CB(i)=C_B(i)*C_A(i);
+ C_by_r(i)=CA_CB(i)/r_0(i);
+end
+coefs=regress(C_A,C_by_r);//The equation ((C_B*C_A)/r_0)= 1/(k*K_A) + (C_A/k)
+scf(0)
+plot(C_A,C_by_r,'*');
+xtitle('Test of Eley-Rideal model for benzene alkylation');
+xlabel(' CA ,Mol Fraction');
+ylabel('CA CB/r_0');
+intercept=coefs(1);
+slope=coefs(2);
+K_A=slope/intercept;
+k=1/(slope);
+K_A_k=k*K_A;
+
+//OUTPUT (Ex3.5.1)
+mprintf('\n OUTPUT Ex3.5.1');
+mprintf('\n=================================================')
+mprintf('\nThe rate equation for Eley-Ridely Mechanism is:\n r= %0.0fC_A C_B/(1+%0.2fC_A)',K_A_k,K_A);
+//=========================================================================================================
+
+//Title:Conversion as a function of Space velocity
+//==========================================================================================================
+//INPUT (Ex3.5.2)
+x= [0.16 0.31 0.40 0.75];
+Exp_Inverse_WHSV=(10^-3)*[4 8.2 17 39];//Weight Hourly Space Velocity
+Feed_ratio=10;
+
+//CALCULATION (Ex3.5.2)
+//The integrated rate equation in terms of conversion ln(1/(1-X))+0.236X= 60.4/WHSV (Page no. 106)
+function [y]=integrated_rate_eqn(x0)
+ y=log(1 ./(1-x0))+ 0.236.*x0 - 60.4.*Exp_Inverse_WHSV
+endfunction
+
+n=length(x)
+x0=0.9*ones(1,n); // Provide guess value for conversion
+[x_predicted]=fsolve(x0,integrated_rate_eqn,1d-15); // Using fsolve to determine conversion from integrated rate expression for each operating WHSV
+
+scf(1)
+plot(Exp_Inverse_WHSV,x,'*',Exp_Inverse_WHSV,x_predicted,'--')
+xtitle('Integral analysis','Inverse of WHSV','Conversion')
+legend('Experimental','Predicted')
+
+//OUTPUT (Ex3.5.2)
+//Console Output
+mprintf('\n=================================================\n');
+mprintf('\n OUTPUT Ex3.5.2');
+mprintf('\n Predicted and Experimental Conversion Values')
+mprintf('\n=================================================')
+mprintf('\n10^3/WHSV\tX_experimental\tX_predicted')
+mprintf('\n=================================================')
+for i=1:n
+ mprintf('\n %0.2f\t\t%0.2f\t\t%0.2f ',Exp_Inverse_WHSV(i)*10^3,x(i),x_predicted(i))
+end
+
+//FILE OUTPUT
+fid= mopen('.\Chapter3-Ex5-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex3.5.1');
+mprintf('\n=================================================')
+mfprintf(fid,'\nThe rate equation for Eley-Ridely Mechanism is:\n r= %0.0fC_A C_B/(1+%0.2fC_A)',K_A_k,K_A);
+mfprintf(fid,'\n=================================================\n')
+mfprintf(fid,'\n OUTPUT Ex3.5.2');
+mfprintf(fid,'\n Predicted and Experimental Conversion Values')
+mfprintf(fid,'\n=================================================')
+mfprintf(fid,'\n10^3/WHSV\tX_experimental\tX_predicted')
+mfprintf(fid,'\n=================================================')
+for i=1:n
+ mfprintf(fid,'\n %0.2f\t\t%0.2f\t\t%0.2f ',Exp_Inverse_WHSV(i)*10^3,x(i),x_predicted(i))
+end
+mclose(fid)
+
+//===========================================END OF PROGRAM=================================
+//Disclaimer:Regression method is used to find the slope and intercept in Ex3.5.2 .
+// Hence the rate equation differ from the graphically obtained values of slope and intercept in the textbook.
+
diff --git a/1040/CH3/EX3.6/Chapter3_Ex6_Output.txt b/1040/CH3/EX3.6/Chapter3_Ex6_Output.txt
new file mode 100644
index 000000000..249cc90f1
--- /dev/null
+++ b/1040/CH3/EX3.6/Chapter3_Ex6_Output.txt
@@ -0,0 +1,5 @@
+
+ Temperature_1 Temperature_2
+ ==================================
+(T_eq - T_opt)(K): 17 32
+ T_opt(K): 483 668 \ No newline at end of file
diff --git a/1040/CH3/EX3.6/Ex3_6.sce b/1040/CH3/EX3.6/Ex3_6.sce
new file mode 100644
index 000000000..ff22274fe
--- /dev/null
+++ b/1040/CH3/EX3.6/Ex3_6.sce
@@ -0,0 +1,36 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-3 Ex3.6 Pg No. 114
+//Title: Optimum reaction temperature
+//===========================================================================================================
+clear
+clc
+//INPUT
+del_H=-20*10^3;//Heat of reaction(cal)
+T_eq=[500 700];//Equivalent temperatures (K)
+R=1.987;//Gas Constant (cal/mol K)
+E2_by_E1=2;//Ratio of activation energy
+
+//CALCULATION
+T_opt(1)=T_eq(1)/(1+(log(E2_by_E1)*(R/(-del_H)))*T_eq(1));//Refer equation 3.63 Pg No. 113
+T_opt(2)=T_eq(2)/(1+(log(E2_by_E1)*(R/(-del_H)))*T_eq(2));
+delta_T(1)=T_eq(1)-T_opt(1);
+delta_T(2)=T_eq(2)-T_opt(2);
+
+
+//OUTPUT
+mprintf('\n \t \t Temperature_1\t Temperature_2 ');
+mprintf('\n \t \t==================================');
+mprintf('\n(T_eq - T_opt)(K): \t%0.0f \t\t%0.0f',delta_T(1),delta_T(2));
+mprintf('\n T_opt(K):\t \t%0.0f\t\t%0.0f', T_opt(1),T_opt(2));
+
+fid= mopen('.\Chapter3-Ex6-Output.txt','w');
+mfprintf(fid,'\n \t \t Temperature_1\t Temperature_2 ');
+mfprintf(fid,'\n \t \t==================================');
+mfprintf(fid,'\n(T_eq - T_opt)(K): \t%0.0f \t\t%0.0f',delta_T(1),delta_T(2));
+mfprintf(fid,'\n T_opt(K):\t \t%0.0f\t\t%0.0f', T_opt(1),T_opt(2));
+mclose(fid);
+
+//=========================================================END OF PROGRAM=====================================
+//Disclaimer:There is an arithmetic error in the optimum temperatures obtained in the textbook.
+// Based on the values (T_eq - T_opt)1=17 and (T_eq - T_opt)2=32 the optimum temperatures obtained are
+// T_opt1=483 K and T_opt2=668 K respectively.
diff --git a/1040/CH3/EX3.7/Chapter3_Ex7_Output.txt b/1040/CH3/EX3.7/Chapter3_Ex7_Output.txt
new file mode 100644
index 000000000..cbe7963ea
--- /dev/null
+++ b/1040/CH3/EX3.7/Chapter3_Ex7_Output.txt
@@ -0,0 +1,30 @@
+
+Heat Capacity evaluated at 800 K :827 (cal/°C)
+Temperature Change to carry out the reaction at T_F,
+using the energy to heat the product gas :210 °C
+ OUTPUT Ex3.7.a
+============================================================================
+ X Phi T_eq T_eq r_max
+ - (atm^-0.5) (K) (°C) (gmol/g cat sec)
+============================================================================
+ 0.50 3636568.30 962 689 7.749486E-05
+ 0.60 736637.41 927 654 5.880675E-05
+ 0.70 171613.48 892 619 4.352732E-05
+ 0.80 31644.93 853 580 3.044561E-05
+ 0.90 12422.07 802 529 1.840952E-05
+ 0.95 7367.71 760 487 1.201510E-05
+
+
+ OUTPUT Ex3.7.b
+============================================================================
+===========================================
+ 10^-6/r X (conversion)
+ (gmol/g cat,s) (-)
+===========================================
+ 0.04 0.10
+ 0.03 0.20
+ 0.02 0.30
+ 0.01 0.40
+ 0.01 0.50
+ 0.02 0.60
+From graphical procedure (1/r vs x) the optimum temperature obtained is T_opt: 412°C \ No newline at end of file
diff --git a/1040/CH3/EX3.7/Chapter3_Ex7_Plot_1.pdf b/1040/CH3/EX3.7/Chapter3_Ex7_Plot_1.pdf
new file mode 100644
index 000000000..6d28beb3d
--- /dev/null
+++ b/1040/CH3/EX3.7/Chapter3_Ex7_Plot_1.pdf
Binary files differ
diff --git a/1040/CH3/EX3.7/Ex3_7.sce b/1040/CH3/EX3.7/Ex3_7.sce
new file mode 100644
index 000000000..6b13db409
--- /dev/null
+++ b/1040/CH3/EX3.7/Ex3_7.sce
@@ -0,0 +1,125 @@
+//Harriot P,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc. USA,pp 436
+//Chapter-3 Ex3.7 Pg No. 115
+//Title:Equilibrium temperature as a function of conversion and Optimum Feed Temperature
+//==========================================================================================================
+clear
+clc
+// COMMON INPUT
+P_opt=1.5; //(atm) Operating pressure of first converter
+x=[0.5 0.6 0.7 0.8 0.9 0.95];// Conversion of SO2
+k=[2E-06 5.1E-06 10.3E-06 18E-06 27E-06 37.5E-06 48E-06 59E-06 69E-06 77E-06] ; //Rate Constant (gmol/g cat sec atm)
+T=420:20:600;// Temperature (°C)
+X=0.68;
+T_F=700;//Feed Temperature(K)
+C_pi_800=[12.53 18.61 8.06 7.51];
+F=100;// (mol) amount of feed
+delta_H_700=-23270;//(cal/mol)
+percent_SO2_f=11;//(%)Percentage of SO2 in feed
+
+
+//CALCULATION (Ex3.7.a)
+n=length(x);
+m=length(k);
+for i=1:n
+ K_eq(i)=((x(i)/(1-x(i))))*((100-5.5*x(i))/(10-5.5*x(i)))^0.5*(1/P_opt)^0.5;
+ T_eq(i)=(11412/(log(K_eq(i))+10.771));
+ P_O2(i)=(10*(10-5.5*x(i))*P_opt)/(100-5.5*x(i));
+ P_SO3(i)=(11*x(i)*P_opt)/(100-5.5*x(i));
+ P_SO2(i)=(11*(1-x(i))*P_opt)/(100-5.5*x(i));
+end
+
+for i=1:n
+ for j=1:m
+ r(j,i)=k(j)*(P_SO2(i)/P_SO3(i))^0.5*(P_O2(i)-(P_SO3(i)/(P_SO2(i)*K_eq(i)))^2)
+ end
+ r_max(i)=max(r(j,i));
+end
+clf()
+scf(0)
+plot(x,T_eq-273,'*');
+xtitle('Temperature in Stage 1 of an SO2 converter');
+xlabel('x,SO2 Conversion');
+ylabel('Temperature,°C' );
+
+//CALCULATION (Ex3.7.b)
+n_SO2=F*percent_SO2_f*10^-2*(1-X);
+n_SO3=F*percent_SO2_f*10^-2*X;
+n_O2=(10-5.5*X);
+n_N2=79;
+sigma_n_C_pi=n_SO2*C_pi_800(1)+n_SO3*C_pi_800(2)+n_O2*C_pi_800(3)+n_N2*C_pi_800(4);
+Temp_change=(F*percent_SO2_f*10^(-2)*X*(-1)*delta_H_700)/sigma_n_C_pi;//Refer equation 3.60 Pg No.110
+mprintf('\nHeat Capacity evaluated at 800 K :%0.0f (cal/°C)',sigma_n_C_pi);
+mprintf('\nTemperature Change to carry out the reaction at T_F,\nusing the energy to heat the product gas :%0.0f °C",Temp_change);
+//From graphical procedure (Figure 3.19 ,Pg No.118) the final temperature is obtained as 410 °C
+T_F=410;//(°C) Final temperature
+//From Figure 3.19 ,Pg No.118 temperature for corresponding conversion is obtained
+X_stage=[0.1;0.2;0.3;0.4;0.5;0.6]
+T_stage=[441;470;500;540;565;580]
+m=length(X_stage);
+for i=1:m
+ K_eq(i)=exp((11412/T_stage(i))-10.771);
+end
+k=10^-6*[5.25 14.15 27 48 61.5 69];//From Table 3.5 Corresponding to the stage temperature data obtained form Figure 3.19
+for i=1:m
+ P_SO2(i)=11*(1-X_stage(i))*P_opt/(100-5.5*X_stage(i))
+ P_SO3(i)=11*X_stage(i)*P_opt/(100-5.5*X_stage(i))
+ P_O2(i)=10*(10-5.5*X_stage(i))*P_opt/(100-5.5*X_stage(i))
+ r(i)=k(i)*(P_SO2(i)/P_SO3(i))^0.5*(P_O2(i)-(P_SO3(i)/(P_SO2(i)*K_eq(i)))^2)*10^6;
+ inverse_r(i)=(1/r(i));
+end
+scf(1)
+ plot(X_stage,inverse_r,'*');
+ xtitle('1/r vs x','X (conversion)','10^-6/r');
+
+
+//OUTPUT (Ex3.7.a)
+mprintf('\n\n OUTPUT Ex3.7.a');
+mprintf('\n============================================================================');
+mprintf('\n X\tPhi\t\tT_eq\tT_eq\t\tr_max');
+mprintf('\n -\t(atm^-0.5)\t(K)\t(°C)\t\t(gmol/g cat sec)');
+mprintf('\n============================================================================');
+for i=1:n-1
+ mprintf('\n %0.2f\t%0.2f\t %0.0f\t%0.0f\t\t%0.6E',x(i),K_eq(i),T_eq(i),T_eq(i)-273,r_max(i));
+end
+mprintf('\n %0.2f\t%0.2f\t\t%0.0f\t%0.0f\t\t%0.6E',x(n),K_eq(n),T_eq(n),T_eq(n)-273,r_max(n));
+
+//OUTPUT (Ex3.7.b)
+mprintf('\n\n\n OUTPUT Ex3.7.b');
+mprintf('\n============================================================================');
+ mprintf('\n===========================================');
+ mprintf('\n 10^-6/r\tX (conversion)');
+ mprintf('\n (gmol/g cat,s) \t(-)');
+ mprintf('\n===========================================');
+ for i=1:m
+ mprintf('\n %0.2f\t\t\t%0.2f',inverse_r(i),X_stage(i));
+ end
+ mprintf('\nFrom graphical procedure (1/r vs x) the optimum temperature obtained is T_opt: 412°C');
+
+// FILE OUTPUT
+fid= mopen('.\Chapter3-Ex7-Output.txt','w');
+mfprintf(fid,'\nHeat Capacity evaluated at 800 K :%0.0f (cal/°C)',sigma_n_C_pi);
+mfprintf(fid,'\nTemperature Change to carry out the reaction at T_F,\nusing the energy to heat the product gas :%0.0f °C",Temp_change);
+mfprintf(fid,'\n OUTPUT Ex3.7.a');
+mfprintf(fid,'\n============================================================================');
+mfprintf(fid,'\n X\tPhi\t\tT_eq\tT_eq\t\tr_max');
+mfprintf(fid,'\n -\t(atm^-0.5)\t(K)\t(°C)\t\t(gmol/g cat sec)');
+mfprintf(fid,'\n============================================================================');
+for i=1:n-1
+ mfprintf(fid,'\n %0.2f\t%0.2f\t %0.0f\t%0.0f\t\t%0.6E',x(i),K_eq(i),T_eq(i),T_eq(i)-273,r_max(i));
+end
+mfprintf(fid,'\n %0.2f\t%0.2f\t\t%0.0f\t%0.0f\t\t%0.6E',x(n),K_eq(n),T_eq(n),T_eq(n)-273,r_max(n));
+mfprintf(fid,'\n\n\n OUTPUT Ex3.7.b');
+mfprintf(fid,'\n============================================================================');
+ mfprintf(fid,'\n===========================================');
+ mfprintf(fid,'\n 10^-6/r\tX (conversion)');
+ mfprintf(fid,'\n (gmol/g cat,s) \t(-)');
+ mfprintf(fid,'\n===========================================');
+ for i=1:m
+ mfprintf(fid,'\n %0.2f\t\t\t%0.2f',inverse_r(i),X_stage(i));
+ end
+ mfprintf(fid,'\nFrom graphical procedure (1/r vs x) the optimum temperature obtained is T_opt: 412°C');
+ mclose(fid);
+
+//==========================================================END OF PROGRAM======================================
+//Disclaimer: The optimum temperature for each conversion is found by trial at maximum rate and the kinetic data in the textbook is not sufficient to calculate the optimum temperature in the code.
+