diff options
Diffstat (limited to '1040/CH10')
-rw-r--r-- | 1040/CH10/EX10.1/Chapter10_Ex1_Output.txt | 6 | ||||
-rw-r--r-- | 1040/CH10/EX10.1/Ex10_1.sce | 80 | ||||
-rw-r--r-- | 1040/CH10/EX10.2/Chapter10_Ex2_Output.txt | 29 | ||||
-rw-r--r-- | 1040/CH10/EX10.2/Ex10_2.sce | 108 |
4 files changed, 223 insertions, 0 deletions
diff --git a/1040/CH10/EX10.1/Chapter10_Ex1_Output.txt b/1040/CH10/EX10.1/Chapter10_Ex1_Output.txt new file mode 100644 index 000000000..73778d525 --- /dev/null +++ b/1040/CH10/EX10.1/Chapter10_Ex1_Output.txt @@ -0,0 +1,6 @@ +
+ The Conversion expected for the given space velocities
+ Space Velocity (hr-1) Conversion (%)
+ ======================================================
+ 60000 98.9
+ 120000 91.9
\ No newline at end of file diff --git a/1040/CH10/EX10.1/Ex10_1.sce b/1040/CH10/EX10.1/Ex10_1.sce new file mode 100644 index 000000000..54dbd6722 --- /dev/null +++ b/1040/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,80 @@ +//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-10 Ex10.1 Pg No. 408
+//Title:Fraction unconverted naphthalene based on model II
+//===========================================================================================================
+clear
+clc
+//INPUT
+T_ref=273;//Reference Temperature
+T_feed=300+T_ref;//Temperature in (K)
+SV_STP=[60000 120000];//Space velocity(Hr-1)
+t_cell=0.04;//Thickness(cm)
+cell_unit_area=100/(2.54^2);//No of cells per unit area(cells/cm2)
+L_inch=6;// Length of monolithic converter (Inches)
+Epsilon=0.68;//Porosity
+myu=0.0284*(10^-2);//Viscosity of air(Poise)
+rho=6.17*10^(-4);//Density of air (g/cm3)
+
+
+//CALCULATION
+d=sqrt(1/cell_unit_area)- t_cell;
+Epsilon=(d^2/(d+t_cell)^2);
+
+//Assume the wash coating lowers d to 0.21 cm and Epsilon to 0.68:
+d_new=0.21;
+Epsilon_new =0.68
+a=4*Epsilon_new/d_new;
+SV=SV_STP.*(T_feed/(T_ref*3600));//Refer equation 10.13
+L_cm=L_inch*2.54;
+u0=SV.*(L_cm);
+u=u0.*(1/Epsilon);
+Nu=myu/rho;//Kinematic viscosity
+D_CO_N2_1=0.192;//Diffusion coefficients for binary gas mixtures(cm2/sec) at 288K
+D_CO_N2_2=D_CO_N2_1*(T_feed/288)^(1.7);////Diffusion coefficients for binary gas mixtures(cm2/sec) at 573K
+Sc=Nu/D_CO_N2_2;
+for i=1:2
+Re(i)=d_new*u(i)/Nu;
+Re_Sc_d_by_L(i)=Re(i)*Sc*(d_new/L_cm);
+Sh(i) = 3.66 *(1+0.095*Re_Sc_d_by_L(i))^(0.45);//Refer equation 10.7
+k_c(i)=Sh(i)*D_CO_N2_2/d_new;
+X(i)=1-exp((-k_c(i)*a*L_cm*u0(i)^(-1)));//Refer equation10.12
+Percent_X(i)=X(i)*100;
+end
+
+//OUTPUT
+mprintf('\n The Conversion expected for the given space velocities ');
+mprintf(' \n Space Velocity (hr-1)\t \t Conversion (%%)');
+mprintf('\n ======================================================');
+for i=1:2
+ mprintf('\n %.0f \t \t \t \t %.1f',SV_STP(i),Percent_X(i));
+end
+
+//FILE OUTPUT
+fid= mopen('.\Chapter10-Ex1-Output.txt','w');
+mfprintf(fid,'\n The Conversion expected for the given space velocities ');
+mfprintf(fid,' \n Space Velocity (hr-1)\t \t Conversion (%%)');
+mfprintf(fid,'\n ======================================================');
+for i=1:2
+ mfprintf(fid,'\n %.0f \t \t \t \t %.1f',SV_STP(i),Percent_X(i));
+end
+mclose(fid);
+
+
+//================================================END OF PROGRAM=========================================================
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/1040/CH10/EX10.2/Chapter10_Ex2_Output.txt b/1040/CH10/EX10.2/Chapter10_Ex2_Output.txt new file mode 100644 index 000000000..e80326a8a --- /dev/null +++ b/1040/CH10/EX10.2/Chapter10_Ex2_Output.txt @@ -0,0 +1,29 @@ +
+ OUTPUT Ex10.2.a
+=====================================
+ The Ammonia Conversion
+=====================================
+ Gauzes Conversion
+ (n) (X)
+=====================================
+ 1 0.286
+ 2 0.490
+ 5 0.814
+ 10 0.966
+ 15 0.994
+ 20 0.999
+
+
+ OUTPUT Ex10.2.b
+==========================================
+ The Ammonia Yield
+==========================================
+ Gauzes Yield
+ (n) (X-0.002500n)
+==========================================
+ 1 0.284
+ 2 0.485
+ 5 0.802
+ 10 0.941
+ 15 0.956
+ 20 0.949
\ No newline at end of file diff --git a/1040/CH10/EX10.2/Ex10_2.sce b/1040/CH10/EX10.2/Ex10_2.sce new file mode 100644 index 000000000..6e803f7a1 --- /dev/null +++ b/1040/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,108 @@ +//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-10 Ex10.2 Pg No. 414
+//Title:Conversion as a function of No. of Gauzes
+//===========================================================================================================
+clear
+clc
+// COMMON INPUT
+M_NH3=17;//Molecular weight NH3
+M_air=29;//Molecular weight air
+f_air=0.9;//Fraction of air in feed
+f_NH3=(1-f_air);//Fraction of NH3 in feed
+myu_air=0.0435*(10^-2);//Viscosity of air (Poise)
+P_atm=(100+14.7)/14.7;//Pressure of the system
+P_ref=1;//Reference Pressure
+T_ref=273;//Reference temperature
+T_inlet=300+T_ref;//Inlet Temperature
+V_ref=22400;
+T_surf=700+T_ref;//Surface Temperature
+u0=1.8;//Velocity at 300 °C (m/sec)
+d=0.076*(10^-1);//Size of wire (cm)
+D_NH3_N2=0.23;//Diffusivity at 298 K 1 atm(cm2/s)
+N=32;//Gauzes (wires/cm)
+frac_N2 = 0.25*(10^(-2));//Fraction of NH3 fed into N2 (Byproduct reaction)
+n =[1 2 5 10 15 20];//No. of Gauzes
+
+
+//CALCULATION (Ex 10.2.a)
+M_ave =f_air*M_air+f_NH3*M_NH3;
+rho =(M_ave*T_ref*P_atm)/(V_ref*T_surf*P_ref);
+u0_surf = u0*(T_surf/T_inlet);
+Re = rho*u0_surf*100*d/myu_air;
+Gamma = [1-32*(d)]^2;//From equation 10.5
+Re_Gamma = Re/Gamma;
+D_NH3 = 0.23*(T_surf/298)^(1.7)*(1/7.8);// at 7.8 atm 700 °C
+Sc =(myu_air*P_ref)/(rho*D_NH3);
+j_D = 0.644*(Re_Gamma)^(-0.57);//Refer equation 10.14
+k_c = j_D*(u0_surf*100/Gamma)*(1/(Sc)^(2/3));
+a_dash = 2*(%pi)*(d)*N
+k_c_a_dash_u0 =(k_c*a_dash)/(u0_surf*100);
+m = length(n)
+for i = 1:m
+ X(i) = (1-exp(-k_c_a_dash_u0*n(i)));
+end
+//CALCULATION (Ex 10.2.b)
+for i = 1:m
+ X(i) = (1-exp(-k_c_a_dash_u0*n(i)));
+ Yield(i) = X(i)-frac_N2*n(i);
+end
+
+
+//OUTPUT(Ex 10.2.a)
+mprintf('\n OUTPUT Ex10.2.a');
+mprintf('\n=====================================');
+mprintf('\n \tThe Ammonia Conversion');
+mprintf('\n=====================================');
+mprintf('\n\t Gauzes Conversion');
+mprintf('\n\t (n) (X)');
+mprintf('\n=====================================');
+for i=1:m
+ mprintf('\n\t %.0f \t \t %.3f',n(i),X(i));
+end
+
+//OUTPUT(Ex 10.2.b)
+mprintf('\n\n\n OUTPUT Ex10.2.b');
+mprintf('\n==========================================');
+mprintf('\n \tThe Ammonia Yield');
+mprintf('\n==========================================');
+mprintf('\n\t Gauzes Yield');
+mprintf('\n\t (n) (X-%fn)',frac_N2);
+mprintf('\n==========================================');
+for i=1:m
+ mprintf('\n\t %.0f \t \t %.3f',n(i),Yield(i));
+end
+//FILE OUTPUT
+fid= mopen('.\Chapter10-Ex2-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex10.2.a');
+mfprintf(fid,'\n=====================================');
+mfprintf(fid,'\n \tThe Ammonia Conversion');
+mfprintf(fid,'\n=====================================');
+mfprintf(fid,'\n\t Gauzes Conversion');
+mfprintf(fid,'\n\t (n) (X)');
+mfprintf(fid,'\n=====================================');
+for i=1:m
+ mfprintf(fid,'\n\t %.0f \t \t %.3f',n(i),X(i));
+end
+mfprintf(fid,'\n\n\n OUTPUT Ex10.2.b');
+mfprintf(fid,'\n==========================================');
+mfprintf(fid,'\n \tThe Ammonia Yield');
+mfprintf(fid,'\n==========================================');
+mfprintf(fid,'\n\t Gauzes Yield');
+mfprintf(fid,'\n\t (n) (X-%fn)',frac_N2);
+mfprintf(fid,'\n==========================================');
+for i=1:m
+ mfprintf(fid,'\n\t %.0f \t \t %.3f',n(i),Yield(i));
+end
+mclose(fid);
+
+//====================================================END OF PROGRAM====================================================
+
+
+
+
+
+
+
+
+
+
|