diff options
Diffstat (limited to '1040/CH1/EX1.4/Chapter1_Ex4.sce')
-rw-r--r-- | 1040/CH1/EX1.4/Chapter1_Ex4.sce | 118 |
1 files changed, 118 insertions, 0 deletions
diff --git a/1040/CH1/EX1.4/Chapter1_Ex4.sce b/1040/CH1/EX1.4/Chapter1_Ex4.sce new file mode 100644 index 000000000..c4f83141c --- /dev/null +++ b/1040/CH1/EX1.4/Chapter1_Ex4.sce @@ -0,0 +1,118 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-1 Ex1.4 Pg No. 23
+//Title: Activation energy from packed bed data
+//=========================================================================================================
+clear
+clc
+clf
+// COMMON INPUT
+L= [0 1 2 3 4 5 6 9];//Bed length in feet(ft)
+T=[330 338 348 361 380 415 447 458 ] //Temperature Corresponding the bed length given (°C)
+R=1.98587E-3;//Gas constant (kcal/mol K)
+
+//CALCLATION (Ex1.4.a)
+//Basis is 1mol of feed A(Furfural) X moles reacted to form Furfuran and CO
+x=(T-330)./130;//Conversion based on fractional temperature rise
+n=length (T);//6 moles of steam per mole of Furfural is used to decrease temperature rise in the bed
+P_mol=x+7;//Total No. of moles in product stream
+for i=1:(n-1)
+ T_avg(i)= (T(i)+T(i+1))/2
+ P_molavg(i)= (P_mol(i)+P_mol(i+1))/2
+ delta_L(i)=L(i+1)-L(i)
+ k_1(i)=((P_molavg(i))/delta_L(i))*log((1-x(i))/(1-x(i+1)))
+ u1(i)=(1/(T_avg(i)+273.15));
+end
+v1=(log(k_1));
+i=length(u1);
+X1=[u1 ones(i,1) ];
+result1= X1\v1;
+k_1_dash=exp(result1(2,1));
+E1=(-R)*(result1(1,1));
+
+//OUTPUT (Ex1.4.a)
+//Console Output
+mprintf('\n OUTPUT Ex1.4.a');
+mprintf('\n========================================================================================\n')
+mprintf('L \t \t T \t\t x \t\t T_average \t(7+x)ave \tk_1')
+mprintf('\n(ft) \t \t (°C) \t\t \t\t (°C) \t ')
+mprintf('\n========================================================================================')
+for i=1:n-1
+mprintf('\n%f \t %f \t %f ',L(i+1),T(i+1),x(i+1))
+mprintf('\t %f \t %f \t %f',T_avg(i),P_molavg(i),k_1(i))
+end
+mprintf('\n\nThe activation energy from the slope =%f kcal/mol',E1 );
+//=====================================================================================================
+
+
+//Title: II Order Reaction
+//=========================================================================================================
+//CALCULATION (Ex 1.4.b)
+for i=1:(n-1)
+ T_avg(i)= (T(i)+T(i+1))/2
+ P_molavg(i)= (P_mol(i)+P_mol(i+1))/2
+ delta_L(i)=L(i+1)-L(i)
+ k_2(i)=((P_molavg(i))/delta_L(i))*((x(i+1)-x(i))/((1-x(i+1))*(1-x(i))))
+ u2(i)=(1/(T_avg(i)+273.15));
+end
+v2=(log(k_2));
+plot(u1.*1000,v1,'o',u2.*1000,v2,'*');
+xlabel("1000/T (K^-1)");
+ylabel("ln k_1 or ln k_2");
+xtitle("ln k vs 1000/T ");
+legend('ln k_1','ln k_2');
+j=length(u2);
+X2=[u2 ones(j,1) ];
+result2= X2\v2;
+k_2_dash=exp(result2(2,1));
+E2=(-R)*(result2(1,1));
+
+//OUTPUT (Ex 1.4.b)
+mprintf('\n OUTPUT Ex1.4.b');
+mprintf('\n========================================================================================\n')
+mprintf('L \t \t T \t\t x \t\t T_average \t(7+x)ave \tk_2')
+mprintf('\n(ft) \t \t (°C) \t\t \t\t (°C) \t ')
+mprintf('\n========================================================================================')
+for i=1:n-1
+mprintf('\n%f \t %f \t %f ',L(i+1),T(i+1),x(i+1))
+mprintf('\t %f \t %f \t %f',T_avg(i),P_molavg(i),k_2(i))
+end
+mprintf('\n\nThe activation energy from the slope =%f kcal/mol',E2 );
+
+//FILE OUTPUT
+fid= mopen('.\Chapter1-Ex4-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex1.4.a');
+mfprintf(fid,'\n========================================================================================\n')
+mfprintf(fid,'L \t \t T \t\t x \t\t T_average \t(7+x)ave \tk_1')
+mfprintf(fid,'\n(ft) \t \t (°C) \t\t \t\t (°C) \t ')
+mfprintf(fid,'\n========================================================================================')
+for i=1:n-1
+mfprintf(fid,'\n%f \t %f \t %f ',L(i+1),T(i+1),x(i+1))
+mfprintf(fid,'\t %f \t %f \t %f',T_avg(i),P_molavg(i),k_1(i))
+end
+mfprintf(fid,'\n\nThe activation energy from the slope =%f kcal/mol',E1 );
+mfprintf(fid,'\n\n========================================================================================\n')
+mfprintf(fid,'\n OUTPUT Ex1.4.b');
+mfprintf(fid,'\n========================================================================================\n')
+mfprintf(fid,'L \t \t T \t\t x \t\t T_average \t(7+x)ave \tk_2')
+mfprintf(fid,'\n(ft) \t \t (°C) \t\t \t\t (°C) \t ')
+mfprintf(fid,'\n========================================================================================')
+for i=1:n-1
+mfprintf(fid,'\n%f \t %f \t %f ',L(i+1),T(i+1),x(i+1))
+mfprintf(fid,'\t %f \t %f \t %f',T_avg(i),P_molavg(i),k_2(i))
+end
+mfprintf(fid,'\n\nThe activation energy from the slope =%f kcal/mol',E2 );
+mclose(all);
+
+//============================================================END OF PROGRAM===========================================
+//Disclaimer (Ex1.4.a):The last value of tavg and k_1 corresponding to L=9 in Table 1.6 (Pg No. 25)of the textbook is a misprint.
+// The value should be 452.5 and 4.955476 respectively instead of 455 and 18.2 as printed in the textbook.
+//Hence there is a change in the activation energy obtained from the code
+// The answer obtained is 21.3935 kcal/mol instead of 27 kcal/mol as reported in the textbook.
+//Figure 1.8 is a plot between ln k_1 vs 1000/T instead of k_1 vs 1000/T as stated in the solution of Ex1.4.a
+//=========================================================================================================
+//Disclaimer (Ex1.4.b): There is a discrepancy between the computed value of activation energy and value reported in textbook
+// Error could have been on similar lines as reported for example Ex.1.4.a
+// Further, intermeidate values for Ex.1.4.b is not available/ reported in textbook and hence could not be compared.
+//Figure 1.8 is a plot between ln k_2 vs 1000/T instead of k_2 vs 1000/T as stated in the solution of Ex1.4.b
+
+
|