diff options
Diffstat (limited to '1026')
-rwxr-xr-x | 1026/CH10/EX10.13/Example10_13.sce | 80 | ||||
-rwxr-xr-x | 1026/CH10/EX10.4/Example10_4.sce | 53 | ||||
-rwxr-xr-x | 1026/CH8/EX8.16/Example8_16.sce | 55 | ||||
-rwxr-xr-x | 1026/CH8/EX8.17/Example8_17.sce | 43 | ||||
-rwxr-xr-x | 1026/CH8/EX8.4/Example8_4.sce | 40 | ||||
-rwxr-xr-x | 1026/CH9/EX9.8/Example9_8.sce | 50 |
6 files changed, 161 insertions, 160 deletions
diff --git a/1026/CH10/EX10.13/Example10_13.sce b/1026/CH10/EX10.13/Example10_13.sce index 912e85bac..923d099ff 100755 --- a/1026/CH10/EX10.13/Example10_13.sce +++ b/1026/CH10/EX10.13/Example10_13.sce @@ -1,41 +1,41 @@ -//chapter10,Example10_13,pg 276
-
-e=1.6*10^-19
-
-Va=150
-
-m=9.1*10^-31
-
-vx=sqrt((2*e*Va)/m)
-
-V=20
-
-d=10^-2
-
-ay=(e/m)*(V/d)
-
-l=10*10^-2
-
-vy=ay*(l/vx)
-
-theta=atan(vy/vx)
-
-theta=theta*(180/%pi)//converting into degree
-
-theta=theta*(%pi/180)//converting into radian
-
-Y=D*tan(theta)
-
-S=(Y/V)
-
-printf("velocity of electron reaching field vx=%.2f m/sec\n",vx)
-
-printf("\nacceleration due to electric field ay=%.2f m/sec2\n",ay)
-
-printf("\nfinal velocity attained by deflecting field vy=%.2f m/sec\n",vy)
-
-printf("\nangle of deflection theta=%.2f deg.\n",theta)
-
-printf("\ndeflection on screen Y=%.2f m\n",Y)
-
+//chapter10,Example10_13,pg 276 + +e=1.6*10^-19 + +Va=150 + +m=9.1*10^-31 + +vx=sqrt((2*e*Va)/m) + +V=20 + +d=10^-2 + +ay=(e/m)*(V/d) + +l=10*10^-2 + +vy=ay*(l/vx) + +theta=atan(vy/vx) + +theta=theta*(180/%pi)//converting into degree + +theta=theta*(%pi/180)//converting into radian + +Y=d*tan(theta) + +S=(Y/V) + +printf("velocity of electron reaching field vx=%.2f m/sec\n",vx) + +printf("\nacceleration due to electric field ay=%.2f m/sec2\n",ay) + +printf("\nfinal velocity attained by deflecting field vy=%.2f m/sec\n",vy) + +printf("\nangle of deflection theta=%.2f deg.\n",theta) + +printf("\ndeflection on screen Y=%.2f m\n",Y) + printf("\ndeflection senstivity S=%.2f m/volt\n",S)
\ No newline at end of file diff --git a/1026/CH10/EX10.4/Example10_4.sce b/1026/CH10/EX10.4/Example10_4.sce index 3faf84579..206744551 100755 --- a/1026/CH10/EX10.4/Example10_4.sce +++ b/1026/CH10/EX10.4/Example10_4.sce @@ -1,27 +1,28 @@ -//chapter10,Example10_4,pg 272
-
-vx=1.7*10^7
-
-Ey=3.4*10^4
-
-x=3*10^-2
-
-t=x/vx
-
-//y=0.5*ay*(t^2)
-
-ay=(e*Ey)/m
-
-y=0.5*ay*(t^2)
-
-Bz=Ey/vx
-
-printf("verical displacement of electron \n")
-
-printf("y=%.2f m",y)
-
-printf("\nmagnitude of magnetic field\n")
-
-printf("B=%.4f wb/m2",B)
-
+//chapter10,Example10_4,pg 272 +e = 1.6*10^-19; +m=9.1*10^-31; +vx=1.7*10^7 + +Ey=3.4*10^4 + +x=3*10^-2 + +t=x/vx + +//y=0.5*ay*(t^2) + +ay=(e*Ey)/m + +y=0.5*ay*(t^2) + +Bz=Ey/vx + +printf("verical displacement of electron \n") + +printf("y=%.2f m",y) + +printf("\nmagnitude of magnetic field\n") + +printf("B=%.4f wb/m2",Bz) + printf("\ndirection of field is upward as Ey is downward")
\ No newline at end of file diff --git a/1026/CH8/EX8.16/Example8_16.sce b/1026/CH8/EX8.16/Example8_16.sce index 955ff3493..227d5ecda 100755 --- a/1026/CH8/EX8.16/Example8_16.sce +++ b/1026/CH8/EX8.16/Example8_16.sce @@ -1,29 +1,28 @@ -//chapter8,Example8_16,pg 209
-
-n=2
-
-grat=1/5000//transmission grating
-
-lam=5893*10^-8
-
-dtheta=(2.5*3.14)/(180*60)//change in angular displacement(in radian)
-
-//(a+b)=grat
-
-//dlam=((a+b)cos(theta)/n)dtheta
-
-cos(theta)=sqrt(1-(((n*lam)/grat)^2))
-
-dlam=(dtheta*grat*cos(theta))/n//difference in wavelength
-
-f=30//focal length
-
-dl=f*dtheta//linear separation
-
-printf("difference between two yellow lines (in cm)\n")
-
-disp(dlam)
-
-printf("\nlinear separation\n")
-
+//chapter8,Example8_16,pg 209 + +n=2 + +grat=1/5000//transmission grating + +lam=5893*10^-8 + +dtheta=(2.5*3.14)/(180*60)//change in angular displacement(in radian) + +//(a+b)=grat + +//dlam=((a+b)cos(theta)/n)dtheta + +theta=acos(sqrt(1-(((n*lam)/grat)^2))) +dlam=(dtheta*grat*cos(theta))/n//difference in wavelength + +f=30//focal length + +dl=f*dtheta//linear separation + +printf("difference between two yellow lines (in cm)\n") + +disp(dlam) + +printf("\nlinear separation\n") + printf("dl=%.4f cm",dl)
\ No newline at end of file diff --git a/1026/CH8/EX8.17/Example8_17.sce b/1026/CH8/EX8.17/Example8_17.sce index 99b6e0535..31025b009 100755 --- a/1026/CH8/EX8.17/Example8_17.sce +++ b/1026/CH8/EX8.17/Example8_17.sce @@ -1,23 +1,22 @@ -//chapter8,Example8_17,pg 210
-
-grat=1/6000
-
-f=30
-
-n=2
-
-lam1=5770*10^-8
-
-lam2=5460*10^-8
-
-dlam=lam1-lam2
-
-lam=lam2
-
-cos(theta)=sqrt(1-(((n*lam)/grat)^2))
-
-dl=((n*f)/(grat*cos(theta)))*dlam
-
-printf("linear separation of two spectral lines\n")
-
+//chapter8,Example8_17,pg 210 + +grat=1/6000 + +f=30 + +n=2 + +lam1=5770*10^-8 + +lam2=5460*10^-8 + +dlam=lam1-lam2 + +lam=lam2 + +theta=acos(sqrt(1-(((n*lam)/grat)^2))) +dl=((n*f)/(grat*cos(theta)))*dlam + +printf("linear separation of two spectral lines\n") + printf("dl=%.4f cm",dl)
\ No newline at end of file diff --git a/1026/CH8/EX8.4/Example8_4.sce b/1026/CH8/EX8.4/Example8_4.sce index 1adc7876f..0415b7c32 100755 --- a/1026/CH8/EX8.4/Example8_4.sce +++ b/1026/CH8/EX8.4/Example8_4.sce @@ -1,21 +1,21 @@ -//chapter8,Example8_4,pg 182
-
-i=45*(%pi/180)
-
-u=1.33
-
-r=asin(sin(i)/u)
-
-r=r*(180/%pi)
-
-//for bright fringe 2*u*t*cos(r)=(2*n+1)(lam/2)
-
-//for minimum thickness n=0
-
-lam=5000*10^-8
-
-t=lam/(4*u*t*cos(r))
-
-printf("min. thickness of film\n")
-
+//chapter8,Example8_4,pg 182 + +i=45*(%pi/180) + +u=1.33 + +r=asin(sin(i)/u) + +r=r*(180/%pi) + +//for bright fringe 2*u*t*cos(r)=(2*n+1)(lam/2) + +//for minimum thickness n=0 + +lam=5000*10^-8 + +t=lam/(4*u*cos(r)) + +printf("min. thickness of film\n") + disp(t)
\ No newline at end of file diff --git a/1026/CH9/EX9.8/Example9_8.sce b/1026/CH9/EX9.8/Example9_8.sce index 8f2763134..2c587f9e4 100755 --- a/1026/CH9/EX9.8/Example9_8.sce +++ b/1026/CH9/EX9.8/Example9_8.sce @@ -1,25 +1,27 @@ -//chapter9,Example9_8,pg 239
-
-//from bragg's law
-
-//2*d*sin(theta)=n*lam
-
-n=1
-
-theta1=5.4*(%pi/180)
-
-theta2=7.6*(%pi/180)
-
-theta3=9.4*(%pi/180)
-
-d100=lam/2*sin(theta1)
-
-d110=lam/2*sin(theta2)
-
-d111=lam/2*sin(theta3)
-
-printf("ratio of interplannar spacing \n(1/d100):(1/d110):(1/d111)=")
-
-printf("%.2f:",sin(theta1));printf("%.2f:",sin(theta2));printf("%.2f",sin(theta3));
-
+//chapter9,Example9_8,pg 239 + +//from bragg's law + +//2*d*sin(theta)=n*lam + +n=1 + +theta1=5.4*(%pi/180) + +theta2=7.6*(%pi/180) + +theta3=9.4*(%pi/180) + +lam = 2 + +d100=lam/2*sin(theta1) + +d110=lam/2*sin(theta2) + +d111=lam/2*sin(theta3) + +printf("ratio of interplannar spacing \n(1/d100):(1/d110):(1/d111)=") + +printf("%.2f:",sin(theta1));printf("%.2f:",sin(theta2));printf("%.2f",sin(theta3)); + printf("\nas ratio (1/d100):(1/d110):(1/d111)=1:sqrt(2):sqrt(3)this relation is valid for simple cubic crystal therefore, this is a SCC crystal")
\ No newline at end of file |