summaryrefslogtreecommitdiff
path: root/1026
diff options
context:
space:
mode:
Diffstat (limited to '1026')
-rwxr-xr-x1026/CH10/EX10.13/Example10_13.sce80
-rwxr-xr-x1026/CH10/EX10.4/Example10_4.sce53
-rwxr-xr-x1026/CH8/EX8.16/Example8_16.sce55
-rwxr-xr-x1026/CH8/EX8.17/Example8_17.sce43
-rwxr-xr-x1026/CH8/EX8.4/Example8_4.sce40
-rwxr-xr-x1026/CH9/EX9.8/Example9_8.sce50
6 files changed, 161 insertions, 160 deletions
diff --git a/1026/CH10/EX10.13/Example10_13.sce b/1026/CH10/EX10.13/Example10_13.sce
index 912e85bac..923d099ff 100755
--- a/1026/CH10/EX10.13/Example10_13.sce
+++ b/1026/CH10/EX10.13/Example10_13.sce
@@ -1,41 +1,41 @@
-//chapter10,Example10_13,pg 276
-
-e=1.6*10^-19
-
-Va=150
-
-m=9.1*10^-31
-
-vx=sqrt((2*e*Va)/m)
-
-V=20
-
-d=10^-2
-
-ay=(e/m)*(V/d)
-
-l=10*10^-2
-
-vy=ay*(l/vx)
-
-theta=atan(vy/vx)
-
-theta=theta*(180/%pi)//converting into degree
-
-theta=theta*(%pi/180)//converting into radian
-
-Y=D*tan(theta)
-
-S=(Y/V)
-
-printf("velocity of electron reaching field vx=%.2f m/sec\n",vx)
-
-printf("\nacceleration due to electric field ay=%.2f m/sec2\n",ay)
-
-printf("\nfinal velocity attained by deflecting field vy=%.2f m/sec\n",vy)
-
-printf("\nangle of deflection theta=%.2f deg.\n",theta)
-
-printf("\ndeflection on screen Y=%.2f m\n",Y)
-
+//chapter10,Example10_13,pg 276
+
+e=1.6*10^-19
+
+Va=150
+
+m=9.1*10^-31
+
+vx=sqrt((2*e*Va)/m)
+
+V=20
+
+d=10^-2
+
+ay=(e/m)*(V/d)
+
+l=10*10^-2
+
+vy=ay*(l/vx)
+
+theta=atan(vy/vx)
+
+theta=theta*(180/%pi)//converting into degree
+
+theta=theta*(%pi/180)//converting into radian
+
+Y=d*tan(theta)
+
+S=(Y/V)
+
+printf("velocity of electron reaching field vx=%.2f m/sec\n",vx)
+
+printf("\nacceleration due to electric field ay=%.2f m/sec2\n",ay)
+
+printf("\nfinal velocity attained by deflecting field vy=%.2f m/sec\n",vy)
+
+printf("\nangle of deflection theta=%.2f deg.\n",theta)
+
+printf("\ndeflection on screen Y=%.2f m\n",Y)
+
printf("\ndeflection senstivity S=%.2f m/volt\n",S) \ No newline at end of file
diff --git a/1026/CH10/EX10.4/Example10_4.sce b/1026/CH10/EX10.4/Example10_4.sce
index 3faf84579..206744551 100755
--- a/1026/CH10/EX10.4/Example10_4.sce
+++ b/1026/CH10/EX10.4/Example10_4.sce
@@ -1,27 +1,28 @@
-//chapter10,Example10_4,pg 272
-
-vx=1.7*10^7
-
-Ey=3.4*10^4
-
-x=3*10^-2
-
-t=x/vx
-
-//y=0.5*ay*(t^2)
-
-ay=(e*Ey)/m
-
-y=0.5*ay*(t^2)
-
-Bz=Ey/vx
-
-printf("verical displacement of electron \n")
-
-printf("y=%.2f m",y)
-
-printf("\nmagnitude of magnetic field\n")
-
-printf("B=%.4f wb/m2",B)
-
+//chapter10,Example10_4,pg 272
+e = 1.6*10^-19;
+m=9.1*10^-31;
+vx=1.7*10^7
+
+Ey=3.4*10^4
+
+x=3*10^-2
+
+t=x/vx
+
+//y=0.5*ay*(t^2)
+
+ay=(e*Ey)/m
+
+y=0.5*ay*(t^2)
+
+Bz=Ey/vx
+
+printf("verical displacement of electron \n")
+
+printf("y=%.2f m",y)
+
+printf("\nmagnitude of magnetic field\n")
+
+printf("B=%.4f wb/m2",Bz)
+
printf("\ndirection of field is upward as Ey is downward") \ No newline at end of file
diff --git a/1026/CH8/EX8.16/Example8_16.sce b/1026/CH8/EX8.16/Example8_16.sce
index 955ff3493..227d5ecda 100755
--- a/1026/CH8/EX8.16/Example8_16.sce
+++ b/1026/CH8/EX8.16/Example8_16.sce
@@ -1,29 +1,28 @@
-//chapter8,Example8_16,pg 209
-
-n=2
-
-grat=1/5000//transmission grating
-
-lam=5893*10^-8
-
-dtheta=(2.5*3.14)/(180*60)//change in angular displacement(in radian)
-
-//(a+b)=grat
-
-//dlam=((a+b)cos(theta)/n)dtheta
-
-cos(theta)=sqrt(1-(((n*lam)/grat)^2))
-
-dlam=(dtheta*grat*cos(theta))/n//difference in wavelength
-
-f=30//focal length
-
-dl=f*dtheta//linear separation
-
-printf("difference between two yellow lines (in cm)\n")
-
-disp(dlam)
-
-printf("\nlinear separation\n")
-
+//chapter8,Example8_16,pg 209
+
+n=2
+
+grat=1/5000//transmission grating
+
+lam=5893*10^-8
+
+dtheta=(2.5*3.14)/(180*60)//change in angular displacement(in radian)
+
+//(a+b)=grat
+
+//dlam=((a+b)cos(theta)/n)dtheta
+
+theta=acos(sqrt(1-(((n*lam)/grat)^2)))
+dlam=(dtheta*grat*cos(theta))/n//difference in wavelength
+
+f=30//focal length
+
+dl=f*dtheta//linear separation
+
+printf("difference between two yellow lines (in cm)\n")
+
+disp(dlam)
+
+printf("\nlinear separation\n")
+
printf("dl=%.4f cm",dl) \ No newline at end of file
diff --git a/1026/CH8/EX8.17/Example8_17.sce b/1026/CH8/EX8.17/Example8_17.sce
index 99b6e0535..31025b009 100755
--- a/1026/CH8/EX8.17/Example8_17.sce
+++ b/1026/CH8/EX8.17/Example8_17.sce
@@ -1,23 +1,22 @@
-//chapter8,Example8_17,pg 210
-
-grat=1/6000
-
-f=30
-
-n=2
-
-lam1=5770*10^-8
-
-lam2=5460*10^-8
-
-dlam=lam1-lam2
-
-lam=lam2
-
-cos(theta)=sqrt(1-(((n*lam)/grat)^2))
-
-dl=((n*f)/(grat*cos(theta)))*dlam
-
-printf("linear separation of two spectral lines\n")
-
+//chapter8,Example8_17,pg 210
+
+grat=1/6000
+
+f=30
+
+n=2
+
+lam1=5770*10^-8
+
+lam2=5460*10^-8
+
+dlam=lam1-lam2
+
+lam=lam2
+
+theta=acos(sqrt(1-(((n*lam)/grat)^2)))
+dl=((n*f)/(grat*cos(theta)))*dlam
+
+printf("linear separation of two spectral lines\n")
+
printf("dl=%.4f cm",dl) \ No newline at end of file
diff --git a/1026/CH8/EX8.4/Example8_4.sce b/1026/CH8/EX8.4/Example8_4.sce
index 1adc7876f..0415b7c32 100755
--- a/1026/CH8/EX8.4/Example8_4.sce
+++ b/1026/CH8/EX8.4/Example8_4.sce
@@ -1,21 +1,21 @@
-//chapter8,Example8_4,pg 182
-
-i=45*(%pi/180)
-
-u=1.33
-
-r=asin(sin(i)/u)
-
-r=r*(180/%pi)
-
-//for bright fringe 2*u*t*cos(r)=(2*n+1)(lam/2)
-
-//for minimum thickness n=0
-
-lam=5000*10^-8
-
-t=lam/(4*u*t*cos(r))
-
-printf("min. thickness of film\n")
-
+//chapter8,Example8_4,pg 182
+
+i=45*(%pi/180)
+
+u=1.33
+
+r=asin(sin(i)/u)
+
+r=r*(180/%pi)
+
+//for bright fringe 2*u*t*cos(r)=(2*n+1)(lam/2)
+
+//for minimum thickness n=0
+
+lam=5000*10^-8
+
+t=lam/(4*u*cos(r))
+
+printf("min. thickness of film\n")
+
disp(t) \ No newline at end of file
diff --git a/1026/CH9/EX9.8/Example9_8.sce b/1026/CH9/EX9.8/Example9_8.sce
index 8f2763134..2c587f9e4 100755
--- a/1026/CH9/EX9.8/Example9_8.sce
+++ b/1026/CH9/EX9.8/Example9_8.sce
@@ -1,25 +1,27 @@
-//chapter9,Example9_8,pg 239
-
-//from bragg's law
-
-//2*d*sin(theta)=n*lam
-
-n=1
-
-theta1=5.4*(%pi/180)
-
-theta2=7.6*(%pi/180)
-
-theta3=9.4*(%pi/180)
-
-d100=lam/2*sin(theta1)
-
-d110=lam/2*sin(theta2)
-
-d111=lam/2*sin(theta3)
-
-printf("ratio of interplannar spacing \n(1/d100):(1/d110):(1/d111)=")
-
-printf("%.2f:",sin(theta1));printf("%.2f:",sin(theta2));printf("%.2f",sin(theta3));
-
+//chapter9,Example9_8,pg 239
+
+//from bragg's law
+
+//2*d*sin(theta)=n*lam
+
+n=1
+
+theta1=5.4*(%pi/180)
+
+theta2=7.6*(%pi/180)
+
+theta3=9.4*(%pi/180)
+
+lam = 2
+
+d100=lam/2*sin(theta1)
+
+d110=lam/2*sin(theta2)
+
+d111=lam/2*sin(theta3)
+
+printf("ratio of interplannar spacing \n(1/d100):(1/d110):(1/d111)=")
+
+printf("%.2f:",sin(theta1));printf("%.2f:",sin(theta2));printf("%.2f",sin(theta3));
+
printf("\nas ratio (1/d100):(1/d110):(1/d111)=1:sqrt(2):sqrt(3)this relation is valid for simple cubic crystal therefore, this is a SCC crystal") \ No newline at end of file