diff options
Diffstat (limited to '1019/CH8')
-rw-r--r-- | 1019/CH8/EX8.1/Example_8_1.sce | 18 | ||||
-rw-r--r-- | 1019/CH8/EX8.10/Example_8_10.sce | 13 | ||||
-rw-r--r-- | 1019/CH8/EX8.12/Example_8_12.sce | 20 | ||||
-rw-r--r-- | 1019/CH8/EX8.13/Example_8_13.sce | 16 | ||||
-rw-r--r-- | 1019/CH8/EX8.15/Example_8_15.sce | 17 | ||||
-rw-r--r-- | 1019/CH8/EX8.16/Example_8_16.sce | 19 | ||||
-rw-r--r-- | 1019/CH8/EX8.18/Example_8_18.sce | 14 | ||||
-rw-r--r-- | 1019/CH8/EX8.19/Example_8_19.sce | 17 | ||||
-rw-r--r-- | 1019/CH8/EX8.2/Example_8_2.sce | 27 | ||||
-rw-r--r-- | 1019/CH8/EX8.20/Example_8_20.sce | 24 | ||||
-rw-r--r-- | 1019/CH8/EX8.22/Example_8_22.sce | 17 | ||||
-rw-r--r-- | 1019/CH8/EX8.23/Example_8_23.sce | 21 | ||||
-rw-r--r-- | 1019/CH8/EX8.27/Example_8_27.sce | 18 | ||||
-rw-r--r-- | 1019/CH8/EX8.28/Example_8_28.sce | 15 | ||||
-rw-r--r-- | 1019/CH8/EX8.3/Example_8_3.sce | 21 | ||||
-rw-r--r-- | 1019/CH8/EX8.32/Example_8_32.sce | 14 | ||||
-rw-r--r-- | 1019/CH8/EX8.4/Example_8_4.sce | 18 | ||||
-rw-r--r-- | 1019/CH8/EX8.5/Example_8_5.sce | 23 | ||||
-rw-r--r-- | 1019/CH8/EX8.6/Example_8_6.sce | 19 | ||||
-rw-r--r-- | 1019/CH8/EX8.7/Example_8_7.sce | 14 | ||||
-rw-r--r-- | 1019/CH8/EX8.8/Example_8_8.sce | 14 | ||||
-rw-r--r-- | 1019/CH8/EX8.9/Example_8_9.sce | 27 |
22 files changed, 406 insertions, 0 deletions
diff --git a/1019/CH8/EX8.1/Example_8_1.sce b/1019/CH8/EX8.1/Example_8_1.sce new file mode 100644 index 000000000..a1e003f90 --- /dev/null +++ b/1019/CH8/EX8.1/Example_8_1.sce @@ -0,0 +1,18 @@ +//Example 8.1
+clear;
+clc;
+
+//Given
+Kp=0.10;//equillibrium constant at 300K
+Pa=20;// Partial pressure of A in atm
+Pm=1.0;///partial pressure of M in atm
+T=300;//Temperature in K
+R=8.314;// gas constant in J K^-1 mol^-1
+//To determine the free energy
+Qp=Pm/Pa;//reaction quotient
+delG=R*T*log(Qp/Kp);//free energy change
+mprintf('(a) delG = %f J mol^-1',delG);
+delG0=-R*T*log(Kp);//standard free energy in J mol^-1
+mprintf('\n (b) standard free energy = %f J mol^-1',delG0);
+mprintf('\n (c) Since delG is negetive,the reaction proceeds spontaneously in forward direction')
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.10/Example_8_10.sce b/1019/CH8/EX8.10/Example_8_10.sce new file mode 100644 index 000000000..721a4940b --- /dev/null +++ b/1019/CH8/EX8.10/Example_8_10.sce @@ -0,0 +1,13 @@ +//Example 8.10
+clear;
+clc;
+
+//Given
+T1=298;//initial temperature in K
+T2=308;//final temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+
+//To determine the value of delHo
+delHo=((R*T1*T2*log(2))/(T2-T1))*0.001;//delHo in kJ mol^-1
+mprintf('Enthalpy of reaction,delHo = %f kJ mol^-1',delHo);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.12/Example_8_12.sce b/1019/CH8/EX8.12/Example_8_12.sce new file mode 100644 index 000000000..20219bac1 --- /dev/null +++ b/1019/CH8/EX8.12/Example_8_12.sce @@ -0,0 +1,20 @@ +//Example 8.12
+clear;
+clc;
+
+//Given
+T1=1225;//initial temperature in K
+T2=1200;//final temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+delHo=216.7;//standard enthalpy of the reaction in kJ
+K1=0.00328;//equillibrium constant at temperature T1
+
+//To determine equillibrium constant,delSo and delGo at temperature T2
+k=(log(K1)-((1000*delHo/R)*((1/T2)-(1/T1))));//k=log(K2)
+K2=exp(k);//equillibrium constant at T2
+delGo=R*T2*k/1000;//delGo in kJ mol^-1
+delSo=1000*((delHo+delGo)/T2);//delSo in J mol^-1 K^-1
+mprintf('equillibrium constant at 1200 K = %f',K2);
+mprintf('\n delGo at 1200 K = %f kJ mol^-1',delGo);
+mprintf('\n delSo at 1200 K = %f J K^-1 mol^-1',delSo);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.13/Example_8_13.sce b/1019/CH8/EX8.13/Example_8_13.sce new file mode 100644 index 000000000..3c2781282 --- /dev/null +++ b/1019/CH8/EX8.13/Example_8_13.sce @@ -0,0 +1,16 @@ +//Example 8.13
+clear;
+clc;
+
+//Given
+T=1225;//temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+delHo=216.7;//standard enthalpy of the reaction in kJ
+K=0.00328;//equillibrium constant at temperature T1
+
+//To determine delSo and delGo at temperature T
+delGo=R*T*log(K)/1000;//delGo in kJ mol^-1
+delSo=1000*((delHo+delGo)/T);//delSo in J mol^-1 K^-1
+mprintf('delGo at 1225 K = %f kJ mol^-1',delGo);
+mprintf('\n delSo at 1225 K = %f J K^-1 mol^-1',delSo);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.15/Example_8_15.sce b/1019/CH8/EX8.15/Example_8_15.sce new file mode 100644 index 000000000..41336e333 --- /dev/null +++ b/1019/CH8/EX8.15/Example_8_15.sce @@ -0,0 +1,17 @@ +//Example 8.15
+clear;
+clc;
+
+//Given
+T=298;//temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+delGfoH2Ol=-237.2;//standard enthalpy of formation of water in kJ mol^-1
+pH2O=23.7;//vapour pressure of water in mm Hg
+P=760;//standard pressure in mm Hg
+
+//To determine delGfoH2Og
+Kp=pH2O/P;//equillibrium constant for given reaction
+delGo=(-1)*R*T*log(Kp)/1000;//delGo in kJ mol^-1
+delGfoH2Og=delGo+delGfoH2Ol;//free energy of formation of water vapour in kJ mol^-1
+mprintf('Free energy of formation of water vapour,delGfoH2Og = %f kJ mol^-1',delGfoH2Og);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.16/Example_8_16.sce b/1019/CH8/EX8.16/Example_8_16.sce new file mode 100644 index 000000000..075293b98 --- /dev/null +++ b/1019/CH8/EX8.16/Example_8_16.sce @@ -0,0 +1,19 @@ +//Example 8.16
+clear;
+clc;
+
+//Given
+T=298;//temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+delGfoCuO=-127.2;//standard enthalpy of formation of CuO in kJ mol^-1
+pH2O=23.7;//vapour pressure of water in mm Hg
+P=760;//standard pressure in mm Hg
+
+//To determine delGfoH2Og
+Kp=pH2O/P;//equillibrium constant for given reaction
+delGo=(-2)*delGfoCuO;//delGo in kJ mol^-1
+k=(-1000*delGo)/(R*T);//k=log(Kp)
+Kp=exp(k);//equillibrium constant Kp
+pO2=Kp*1;//partial pressure of O2 in atm
+mprintf('Partial pressure of O2 over CuO and Cu at 298 K = %f atm',pO2);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.18/Example_8_18.sce b/1019/CH8/EX8.18/Example_8_18.sce new file mode 100644 index 000000000..bafe51699 --- /dev/null +++ b/1019/CH8/EX8.18/Example_8_18.sce @@ -0,0 +1,14 @@ +//Example 8.18
+clear;
+clc;
+
+//Given
+delHo=241.82;//Enthalpy of reaction in kJ mol^-1
+delSo=44.4;//Entropy of the reaction in J K^-1 mol^-1
+K=1;//equillibrium constant for the reaction
+
+//To determine the temperature
+delGo=0;//since delGo=RTlog(k) and log(1)=0
+T=(delHo*1000)/delSo;//temperature in K
+mprintf('Temperature at which K=1 is %f K',T);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.19/Example_8_19.sce b/1019/CH8/EX8.19/Example_8_19.sce new file mode 100644 index 000000000..6bb038016 --- /dev/null +++ b/1019/CH8/EX8.19/Example_8_19.sce @@ -0,0 +1,17 @@ +//Example 8.19
+clear;
+clc;
+
+//Given
+delGo2=-36.7;//standard free energy change in conversion of fumarate to asparate in kJ mol^-1
+delGo3=-2.9;//standard free energy change in conversion of fumarate to malate in kJ mol^-1
+T=310;//Temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+
+//To determine the standard free energy change in conversion of malate to asparate and the equillibrium constant
+delGo1=delGo2-delGo3;//the standard free energy change in conversion of malate to asparate in kJ mol^-1
+k=(-1000*delGo1)/(R*T);//k=log(K)
+K=exp(k);//K is the equillibrium constant
+mprintf('Standard free energy change in conversion of malate to asparate = %f kJ mol^-1',delGo1);
+mprintf('\n The equillibrium constant at 310 K = %f',K);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.2/Example_8_2.sce b/1019/CH8/EX8.2/Example_8_2.sce new file mode 100644 index 000000000..9bd8c3d3f --- /dev/null +++ b/1019/CH8/EX8.2/Example_8_2.sce @@ -0,0 +1,27 @@ +//Example 8.2
+clear;
+clc;
+
+//Given
+p=0.35;
+Kp=p*10^-24;//equillibrium constant at 300K
+P0=1.0;//standard pressure in atm
+T=300;//Temperature in K
+R=0.082;// gas constant in atm dm^3 mol^-1K^-1
+C0=1;//in mol/dm^3
+Kp2=0.157;//Kp for reaction in (b)
+P=1;//pressure in atm
+
+// (a) To determine Kc1
+delv=(2+1)-2;
+c=p*((P0/(C0*R*T)))^delv
+Kc1=c*10^-24;//equillibrium constant
+mprintf('(a) Kc = %f *(10^-24)',c);
+
+//(b) To determine Kc2
+delv2=2-1;
+Kc2=Kp2*((P0/(C0*R*T)))^delv2;
+mprintf('\n (b) Kc = %f',Kc2);
+Kx=Kp2*(P0/P);//equillibrium constant
+mprintf('\n Kx = %f',Kx)
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.20/Example_8_20.sce b/1019/CH8/EX8.20/Example_8_20.sce new file mode 100644 index 000000000..60766ffa3 --- /dev/null +++ b/1019/CH8/EX8.20/Example_8_20.sce @@ -0,0 +1,24 @@ +//Example 8.20
+clear;
+clc;
+
+//Given
+T1=313;//1st temperature in K
+T2=333;//2nd temperature in K
+KT1=0.86;//Value of equillibrium constant at temperature T1
+KT2=0.35;//Value of equillibrium constant at temperature T2
+R=8.314;//gas constant in J K^-1 mol^-1
+
+//To determine the value of delGo,delHo and delSo
+delHo=(R*T1*T2*log(KT2/KT1))/(T2-T1);//delHo in J mol^-1
+delGo313=-R*T1*log(KT1);//value of delGo at T1 in J mol^-1
+delGo333=-R*T2*log(KT2);//value of delGo at T2 in J mol^-1
+delSo313=(delHo-delGo313)/T1;//value of delSo at T1 in J K^-1 mol^-1
+delSo333=(delHo-delGo333)/T2;//value of delSo at T2 in J K^-1 mol^-1
+mprintf('delHo = %f J mol^-1',delHo);
+mprintf('\n delGo at 313 K = %f J mol^-1',delGo313);
+mprintf('\n delGo at 333 K = %f J mol^-1',delGo333);
+mprintf('\n delSo at 313 K = %f J K^-1 mol^-1',delSo313);
+mprintf('\n delSo at 333 K = %f J K^-1 mol^-1',delSo333);
+
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.22/Example_8_22.sce b/1019/CH8/EX8.22/Example_8_22.sce new file mode 100644 index 000000000..9f9c28b29 --- /dev/null +++ b/1019/CH8/EX8.22/Example_8_22.sce @@ -0,0 +1,17 @@ +//Example 8.22
+clear;
+clc;
+
+//Given
+T=298;//Temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+k=4.814-(2059/T);//k=log(K),where K is the equillibrium constant
+
+//To determine the values of delGo,delHo and delSo
+delSo=4.814*R;//entropy change in J K^-1 mol^-1
+delGo=-R*T*k;//free energy change in J mol^-1
+delHo=delGo+(T*delSo);//enthalpy change in J mol^-1
+mprintf('delHo = %f J mol^-1',delHo);
+mprintf('\n delGo = %f J mol^-1',delGo);
+mprintf('\n delSo = %f J K^-1 mol^-1',delSo);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.23/Example_8_23.sce b/1019/CH8/EX8.23/Example_8_23.sce new file mode 100644 index 000000000..5778b4614 --- /dev/null +++ b/1019/CH8/EX8.23/Example_8_23.sce @@ -0,0 +1,21 @@ +//Example 8.23
+clear;
+clc;
+
+//Given
+T=298;//Temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+R1=0.082;//gas constant in atm dm^3 K^-1 mol^-1
+P=1;//pressure in atm
+a=0.167;//degree of dissociation
+
+//To determine Kp,Kc,delGoP and delGoC
+Kp=(4*(a^2)*P)/(1-(a^2));//Equillibrium constant in terms of pressure
+Kc=Kp*((R1*T)^(-1));//Equillibrium constant in terms of concentration
+delGoP=-0.001*R*T*log(Kp);//standard free energy in kJ
+delGoC=-0.001*R*T*log(Kc);//standard free energy in kJ
+mprintf('Kc = %f',Kc);
+mprintf('\n Kp = %f',Kp);
+mprintf('\n delGoP = %f kJ',delGoP);
+mprintf('\n delGoC = %f kJ',delGoC);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.27/Example_8_27.sce b/1019/CH8/EX8.27/Example_8_27.sce new file mode 100644 index 000000000..a042973be --- /dev/null +++ b/1019/CH8/EX8.27/Example_8_27.sce @@ -0,0 +1,18 @@ +//Example 8.27
+clear;
+clc;
+
+//Given
+T=1300;//Temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+p1=1.067*(10^5);//ratio of pressure of CO/CO2 for 1st reaction
+p2=1.835*(10^5);//ratio of pressure of CO/CO2 for 2nd reaction
+
+//To determine the values of delGo for required reaction
+Kp1=p1^2;//equillibrium constant for the 1st reaction
+Kp2=p2^2;//equillibrium constant for 2nd reaction
+delGo1=-0.001*R*T*log(Kp1);//free energy change in kJ
+delGo2=-0.001*R*T*log(Kp2);//free energy change in kJ
+delGoA=delGo2-delGo1;//delGo for required reaction in kJ
+mprintf('delGo for the formation of cobaltous silicate = %f kJ',delGoA);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.28/Example_8_28.sce b/1019/CH8/EX8.28/Example_8_28.sce new file mode 100644 index 000000000..cd928ebb3 --- /dev/null +++ b/1019/CH8/EX8.28/Example_8_28.sce @@ -0,0 +1,15 @@ +//Example 8.28
+clear;
+clc;
+
+//Given
+T=298;//temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+delGfoO3=163.43;//free energy of formation of O3 in kJ
+delGfoO2=0;//free energy of formation of O2 in kJ
+
+//To determine the value of equillibrium constant
+delGo=(2*delGfoO3)-(3*delGfoO2);//delGo in kJ
+k=(-1000*delGo)/(2.303*R*T);//k=log10(K)
+mprintf('Equillibrium constant,K = 10^%f',k);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.3/Example_8_3.sce b/1019/CH8/EX8.3/Example_8_3.sce new file mode 100644 index 000000000..347396e7f --- /dev/null +++ b/1019/CH8/EX8.3/Example_8_3.sce @@ -0,0 +1,21 @@ +//Example 8.3
+clear;
+clc;
+
+//Given
+p=1.7;
+Kp=p*10^12;//equillibrium constant at 300K
+
+// (i) To determine Kp1
+p1=1/p;
+Kp1=1/Kp;//equillibrium constant
+mprintf('(i) Kp = %f * 10^-12',p1);
+
+//(ii) To determine Kc2
+p2=p1^2;
+Kp2=Kp1^2;//equillibrium constant
+mprintf('\n (ii) Kp = %f * 10^-24',p2);
+p3=1/p2;
+Kp3=1/Kp2;//equillibrium constant
+mprintf('\n (iii) Kp = %f * 10^24',p3)
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.32/Example_8_32.sce b/1019/CH8/EX8.32/Example_8_32.sce new file mode 100644 index 000000000..f75a04df2 --- /dev/null +++ b/1019/CH8/EX8.32/Example_8_32.sce @@ -0,0 +1,14 @@ +//Example 8.32
+clear;
+clc;
+
+//Given
+n1=1;//moles of acetic acid and ethanol initially mixed
+n2=0.667;//moles of easter and water produced
+
+//To determine the equillibrium constant
+n3=1-0.667;//moles of acid and ethanol remaining
+N=2;//total number of moles of reactants taken
+Ka=((n2/N)*(n2/N))/((n3/N)*(n3/N));
+mprintf('Equillibrium constant for the reaction = %f',Ka);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.4/Example_8_4.sce b/1019/CH8/EX8.4/Example_8_4.sce new file mode 100644 index 000000000..59a7c2273 --- /dev/null +++ b/1019/CH8/EX8.4/Example_8_4.sce @@ -0,0 +1,18 @@ +//Example 8.4
+clear;
+clc;
+
+//Given
+v=2;
+p=1;//pressure in atm
+V=1;//volume in L
+R=0.082;// gas constant in L atm K^-1 mol^-1
+T=298.15;// temperature in K
+w=3.176;// weight of N2O4 taken in g
+
+// To determine degree of dissociation a
+m1=(2*14)+(4*16);//molecular mass of N2O4 in g mol^-1
+m2=(w*R*T)/(p*V);//in g mol^-1
+a=(m1-m2)/m2((v-1));//degree of dissociation
+mprintf('Degree of dissociation = %f ',a);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.5/Example_8_5.sce b/1019/CH8/EX8.5/Example_8_5.sce new file mode 100644 index 000000000..93d3f4adc --- /dev/null +++ b/1019/CH8/EX8.5/Example_8_5.sce @@ -0,0 +1,23 @@ +//Example 8.5
+clear;
+clc;
+
+//Given
+delHfoC=0;//enthalpy of formation of graphite in kJ mol^-1
+delHfoH2=0;//enthalpy of formation of Hydrogen molecule in kJ mol^-1
+delHfoCH4=-74.83;//enthalpy of formation of methane in kJ mol^-1
+delSoC=5.68//standard entropy of graphite in J K^-1 mol^-1
+delSoH2=130.59//standard entropy of Hydrogen in J K^-1 mol^-1
+delSoCH4=186.19//standard entropy of methane in J K^-1 mol^-1
+T=298;//temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+
+//To determine the change in free energy delGo and Kp,the equillibrium constant
+delHo=1000*(delHfoCH4-(delHfoC+(2*delHfoH2)));//Net change in enthalpy in J mol^-1
+delSo=delSoCH4-(delSoC+(2*delSoH2));//Net change in entropy in J K^-1 mol^-1
+delGo=delHo-(T*delSo);//delGo in J mol^-1
+k=-1*delGo/(R*T);//k=log(Kp)
+Kp=exp(k);//equillibrium constant Kp
+mprintf('Change in free energy,delGo=%f J mol^-1',delGo);
+mprintf('\n Equillibrium constant,Kp=%f',Kp);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.6/Example_8_6.sce b/1019/CH8/EX8.6/Example_8_6.sce new file mode 100644 index 000000000..5afde5050 --- /dev/null +++ b/1019/CH8/EX8.6/Example_8_6.sce @@ -0,0 +1,19 @@ +//Example 8.6
+clear;
+clc;
+
+//Given
+T=298;//temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+p=101325;//pressure in N m^-2
+MoNH3=-16.6;//standard chemical potential of amonia at 298 K in kJ mol^-1
+MoN2=0;//standard chemical potential of nitrogen at 298 K in kJ mol^-1
+MoH2=0;//standard chemical potential of hydrogen at 298 K in kJ mol^-1
+
+//To determine the value of equillibrium constant Kp
+delGo=MoN2+(3*MoH2)-(2*MoNH3);//delGo in kJ
+k=(-1000*delGo)/(R*T);//k=log(Kp)
+Kp=exp(k);//equillibrium constant Kp
+mprintf('Change in free energy,delGo=%f kJ',delGo);
+mprintf('\n Equillibrium constant,Kp=%f',Kp);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.7/Example_8_7.sce b/1019/CH8/EX8.7/Example_8_7.sce new file mode 100644 index 000000000..b1b2d8572 --- /dev/null +++ b/1019/CH8/EX8.7/Example_8_7.sce @@ -0,0 +1,14 @@ +//Example 8.6
+clear;
+clc;
+
+//Given
+T=673;//temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+p=101325;//pressure in N m^-2
+Kp=1.64*10^(-4);//Equillibrium constant for the synthesis of amonia at 673 K
+
+//To determine the value of delGo
+delGo=(-1)*R*T*log(Kp);//delGo in J mol^-1
+mprintf('Change in free energy,delGo = %f J mol^-1',delGo);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.8/Example_8_8.sce b/1019/CH8/EX8.8/Example_8_8.sce new file mode 100644 index 000000000..2038deeac --- /dev/null +++ b/1019/CH8/EX8.8/Example_8_8.sce @@ -0,0 +1,14 @@ +//Example 8.8
+clear;
+clc;
+
+//Given
+T=298;//temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+delGfoC2H4=68.12;//standard free energy change in the formation of ethylene in kJ mol^-1
+delGfoC2H6=-32.89;//standard free energy change in the formation of ethane in kJ mol^-1
+
+//To determine the value of delGo i.e. heat of hydrogenation of ethylene
+delGo=delGfoC2H6-delGfoC2H4;//heat of hydrogenation of ethylene in kJ mol^-1
+mprintf('Heat of hydrogenation of ethylene,delGo = %f kJ mol^-1',delGo);
+//end
\ No newline at end of file diff --git a/1019/CH8/EX8.9/Example_8_9.sce b/1019/CH8/EX8.9/Example_8_9.sce new file mode 100644 index 000000000..a5ef94c8e --- /dev/null +++ b/1019/CH8/EX8.9/Example_8_9.sce @@ -0,0 +1,27 @@ +//Example 8.9
+clear;
+clc;
+
+//Given
+T1=298;//initial temperature in K
+T2=1073;//final temperature in K
+R=8.314;//gas constant in J K^-1 mol^-1
+delGfoH2=0;//standard free energy change in the formation of hydrogen in kJ mol^-1
+delGfoC0=-137.27;//standard free energy change in the formation of CO in kJ mol^-1
+delGfoH2O=-228.59;//standard free energy change in the formation of water in kJ mol^-1
+delGfoC02=-394.38;//standard free energy change in the formation of CO2 in kJ mol^-1
+delHfoH2=0;//standard enthalpy in the formation of hydrogen in kJ mol^-1
+delHfoC0=-110.52;//standard enthalpy in the formation of CO in kJ mol^-1
+delHfoH2O=-241.83;//standard enthalpy in the formation of water in kJ mol^-1
+delHfoC02=-392.51;//standard enthalpy in the formation of CO2 in kJ mol^-1
+
+//To determine the value of Kp at T1 and T2
+delGo=delGfoH2+delGfoC02-(delGfoC0+delGfoH2O);//free energy change in kJ mol^-1
+delHo=delHfoH2+delHfoC02-(delHfoC0+delHfoH2O);//standard enthalpy change in kJ mol^-1
+k1=(-1000*delGo)/(R*T1);//k=log(Kp)
+Kp1=exp(k1);//equillibrium constant Kp at 298 K
+mprintf('Equillibrium constant,Kp at 298 K = %f ',Kp1);
+k2=((-1000*delHo/R)*((1/1073)-(1/298)))+k1;//equillibrium constant at 1073 K
+Kp2=exp(k2);//equillibrium constant Kp at 1073 K
+mprintf('\n Equillibrium constant,Kp at 1073 K = %f ',Kp2);
+//end
\ No newline at end of file |