diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /926/CH5/EX5.8/Chapter5_Example8.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '926/CH5/EX5.8/Chapter5_Example8.sce')
-rw-r--r-- | 926/CH5/EX5.8/Chapter5_Example8.sce | 43 |
1 files changed, 43 insertions, 0 deletions
diff --git a/926/CH5/EX5.8/Chapter5_Example8.sce b/926/CH5/EX5.8/Chapter5_Example8.sce new file mode 100644 index 000000000..e36a859ad --- /dev/null +++ b/926/CH5/EX5.8/Chapter5_Example8.sce @@ -0,0 +1,43 @@ +//Hougen O.A., Watson K.M., Ragatz R.A., 2004. Chemical process principles Part-1: Material and Energy Balances(II Edition). CBS Publishers & Distributors, New Delhi, pp 504
+
+//Chapter-5, Illustration 8, Page 123
+//Title: Estimation of humidity and saturation
+//=============================================================================
+clear
+clc
+
+//INPUT
+T = [100 85]; //Initial and wet bulb temperature of entering air in degree F
+P = 1; //Pressure of entering air in atm
+n = 1; //lb-moles of moisture free air
+T1 = 492; //Temperature corresponsing to STP in Rankine
+T2 = [120 115.3]; //Initial and wet bulb temperature of air in degree F in part(b)
+MW = 18; //Molecular weight of water
+
+//DATA FROM GRAPH
+PS = [52 84]; //Percentage saturation at WBT of 85 and 115.3 degree C respectively obtained from Fig 20 Page 122
+MH = [0.037 0.11 ]; //Molal humidity at WBT of 85 and 115.3 degree C respectively obtained from Fig 20 Page 122
+DP = 80.5; //Dew point corresponding to WBT of 85 degree F obtained from Fig 20 Page 122
+
+
+//CALCULATION
+//Part(b)
+n1 = n+MH(1); //lb-moles of wet air entering
+T3 = T+460; //initial temperature of entering air in Rankine
+v = n1*359*(T3(1)/T1); //Volume of wet air entering in cu ft
+n2 = MH(2)-MH(1); //lb-moles of water evaporated
+w1 = n2*MW; //lb of water evaporated
+w2 = w1*1000/v; //lb of water evaporated per 1000 cu ft of entering wet air
+
+//OUTPUT
+// Console output
+mprintf('\n (a) Molal humidity of the air = %4.3f \n Percentage saturation = %2.0f %%\n Dew point = %3.2f degree F',MH(1),PS(1),DP);
+mprintf('\n (b) Percentage saturation of the air leaving the evaporator = %2.0f %% \n weight of the water evaporated = %2.1f lb',PS(2),w2);
+
+// File output
+fd= mopen('.\Chapter5_Example8_Output.txt','w');
+mfprintf(fd,'\n (a) Molal humidity of the air = %4.3f \n Percentage saturation = %2.0f %%\n Dew point = %3.2f degree F',MH(1),PS(1),DP);
+mfprintf(fd,'\n (b) Percentage saturation of the air leaving the evaporator = %2.0f %% \n weight of the water evaporated = %2.1f lb',PS(2),w2);
+mclose(fd);
+
+//=============================END OF PROGRMAM=================================
|