diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /914/CH11/EX11.5 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '914/CH11/EX11.5')
-rwxr-xr-x | 914/CH11/EX11.5/ex11_5.sce | 58 |
1 files changed, 58 insertions, 0 deletions
diff --git a/914/CH11/EX11.5/ex11_5.sce b/914/CH11/EX11.5/ex11_5.sce new file mode 100755 index 000000000..fa9d0b66a --- /dev/null +++ b/914/CH11/EX11.5/ex11_5.sce @@ -0,0 +1,58 @@ +clc;
+warning("off");
+printf("\n\n example11.5 - pg521");
+// given
+Nre=50000;
+d=0.04; //[m] - diameter of pipe
+// physical properties of water
+T1=293.15; //[K]
+T2=303.15; //[K]
+T3=313.15; //[K]
+p1=999; //[kg/m^3] - density of water at temperature T1
+p2=996.0; //[kg/m^3] - density of water at temperature T2
+p3=992.1; //[kg/m^3] - density of water at temperature T3
+mu1=1.001; //[cP] - viscosity of water at temperature T1
+mu2=0.800; //[cP] - viscosity of water at temperature T2
+mu3=0.654; //[cP] - viscosity of water at temperature T3
+k1=0.63; //[W/m*K] - thermal conductivity of water at temperature T1
+k2=0.618; //[W/m*K] - thermal conductivity of water at temperature T2
+k3=0.632; //[W/m*K] - thermal conductivity of water at temperature T3
+cp1=4182; //[J/kg*K] - heat capacity of water at temperature T1
+cp2=4178; //[J/kg*K] - heat capacity of water at temperature T2
+cp3=4179; //[J/kg*K] - heat capacity of water at temperature T3
+Npr1=6.94; // prandtl no. at temperature T1
+Npr2=5.41; // prandtl no. at temperature T2
+Npr3=4.32; // prandtl no. at temperature T3
+// (a) Dittus -Boelter-this correction evalutes all properties at the mean bulk temperature,which is T1
+kmb=0.603
+h=(kmb/d)*0.023*((Nre)^(0.8))*((Npr1)^0.4);
+printf("\n\n (a) Dittus -Boelter\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611);
+// (b) Seider Tate-this correlation evaluates all the properties save muw at the mean bulk temperature
+h=(kmb/d)*(0.027)*((Nre)^0.8)*((Npr1)^(1/3))*((mu1/mu3)^0.14);
+printf("\n\n (b) Seider Tate\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611);
+// (c) Sleicher-Rouse equation
+a=0.88-(0.24/(4+Npr3));
+b=(1/3)+0.5*exp((-0.6)*Npr3);
+Nref=Nre*(mu1/mu2)*(p2/p1);
+Nnu=5+0.015*((Nref)^a)*((Npr3)^b);
+h=Nnu*(kmb/d);
+printf("\n\n (c) Sleicher-Rouse equation\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611);
+// (d) Colbum Analogy- the j factor for heat transfer is calculated
+jh=0.023*((Nref)^(-0.2));
+Nst=jh*((Npr2)^(-2/3));
+U=(Nre*mu1*10^-3)/(d*p1);
+h=Nst*(p1*cp1*U);
+printf("\n\n (d) Colbum Analogy\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611);
+// (e) Friend-Metzner
+f=0.005227;
+Nnu=((Nre)*(Npr1)*(f/2)*((mu1/mu3)^0.14))/(1.20+((11.8)*((f/2)^(1/2))*(Npr1-1)*((Npr1)^(-1/3))));
+h=Nnu*(kmb/d);
+printf("\n\n (e) Friend-Metzner\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611);
+// (f) Numerical analysis
+Nnu=320;
+h=Nnu*(kmb/d);
+printf("\n\n (f) Numerical analysis\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611);
+
+
+
+
|