diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /905/CH8/EX8.6/8_6.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '905/CH8/EX8.6/8_6.sce')
-rwxr-xr-x | 905/CH8/EX8.6/8_6.sce | 84 |
1 files changed, 84 insertions, 0 deletions
diff --git a/905/CH8/EX8.6/8_6.sce b/905/CH8/EX8.6/8_6.sce new file mode 100755 index 000000000..71cadc66b --- /dev/null +++ b/905/CH8/EX8.6/8_6.sce @@ -0,0 +1,84 @@ +clear;
+clc;
+
+// Illustration 8.6
+// Page: 487
+
+printf('Illustration 8.6 - Page: 487\n\n');
+
+// a - toluene b - air
+//*****Data*****
+T_G1 = 333; // [K]
+P_total = 101.325; // [kPa]
+Y_1 = 0.05; // [kg vapor/kg dry air]
+//*****//
+
+C_pa = 1.256; // [kJ/kg.K]
+C_pb = 1.005; // [kJ/kg.K]
+
+C_s1 = C_pb + Y_1*C_pa
+
+T_1 = 383.8; // [K]
+T_c = 591.8; // [K]
+M_a = 92; // [gram/mole]
+M_b = 28.97; // [gram/mole]
+lambda_1 = 33.18*1000/92; // [Latent heat of vaporization at T_1, kJ/kg]
+
+// Constants of antoine equation
+A = 13.9320;
+B = 3057; // [K]
+C = -55.52; // [K]
+
+printf('Illustration 8.6 (a)\n');
+
+// Solution (a)
+
+// Using equation 8.10
+// T_as = T_G1 - (Y_as - Y_l)*lambda_as/C_s1
+// where lambda_2 = lambda_1*((1-T_as/T_c)/(1-T_1/T_c))^.38
+// Y_as = P_a/(P_total-P_a)*M_a/M_b
+// P_a = exp(A-B/(T+c))
+
+deff('[y] = f12(T_as)',' y = T_as - T_G1 + ((exp(13.9320 - (3057/(T_as - 55.52)))/(P_total - (exp(13.9320 - (3057/(T_as - 55.52))))))*(M_a/M_b) - Y_1)*(lambda_1*((1-T_as/T_c)/(1-T_1/T_c))^.38/C_s1)');
+T_as = fsolve(273,f12); // [K]
+printf("Adiabatic Saturation Temperature is %f K\n",T_as);
+
+// Now using equation 8.2
+
+P_a = exp(13.9320-(3057/(T_as-55.52))); // [kPa]
+Y_as = P_a/(P_total-P_a)*M_a/M_b; // [kg vapor/kg dry air]
+
+printf("Absolute humidity is %f kg vapor/kg dry air\n\n",Y_as);
+
+printf('Illustration 8.6 (b)\n');
+
+// Solution (b)
+
+// Thermodynamic properties of mixture of toluene and air
+row = 1.06; // [kg/cubic m]
+u = 19.5*10^-6; // [P]
+Pr = 0.7;
+Dab = 0.1; //[From Wilke-Lee equation, square cm/s]
+Sc = u/(row*Dab*10^-4);
+
+// Using equation 8.16
+
+A_1 = C_s1*(Sc/Pr)^0.567; // [kJ/kg.K]
+// here A_1 = hg/ky, psychrometric ratio
+
+// Using equation 8.15
+// T_w = T_G1 - (Y_w-Y_1)*lambda_w/(hg/ky)
+// where lambda_w = lambda_1*((1-T_w/T_c)/(1-T_1/T_c))^.38
+// Y_w = P_a/(P_total-P_a)*M_a/M_b
+// P_a = exp(A-B/(T+c))
+
+deff('[z] = f15(T_w)',' z = T_w - T_G1 + ((exp(13.9320 - (3057/(T_w - 55.52)))/(P_total - (exp(13.9320 - (3057/(T_w - 55.52))))))*(M_a/M_b) - Y_1)*(lambda_1*((1-T_w/T_c)/(1-T_1/T_c))^.38/A_1)');
+T_w = fsolve(273,f15); // [K]
+printf("Wet bulb Temperature is %f K\n",T_w);
+
+// Now using equation 8.2
+
+P_a = exp(13.9320-(3057/(T_w-55.52))); // [kPa]
+Y_w = P_a/(P_total-P_a)*M_a/M_b; // [kg vapor/kg dry air]
+
+printf("Absolute humidity is %f kg vapor/kg dry air\n",Y_w);
|