summaryrefslogtreecommitdiff
path: root/905/CH2/EX2.7/2_7.sce
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /905/CH2/EX2.7/2_7.sce
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '905/CH2/EX2.7/2_7.sce')
-rwxr-xr-x905/CH2/EX2.7/2_7.sce78
1 files changed, 78 insertions, 0 deletions
diff --git a/905/CH2/EX2.7/2_7.sce b/905/CH2/EX2.7/2_7.sce
new file mode 100755
index 000000000..e4f6629df
--- /dev/null
+++ b/905/CH2/EX2.7/2_7.sce
@@ -0,0 +1,78 @@
+clear;
+clc;
+
+// Illustration 2.7
+// Page: 116
+
+printf('Illustration 2.7 - Page: 116\n\n');
+
+// solution
+//*****Data*****//
+// a-benzene b-nitrogen
+T = 300; // [K]
+P = 101.3; // [kPa]
+v =10; // [m/s]
+R = 8.314; // [cubic m.Pa/mole.K]
+//*****//
+
+// Combining the given correlation with the definitions of j-H, and St_H, from Table 2.1 yields
+// j_H = h*Pr^(2/3)/(Cp*row*v) = h*Pr^(2/3)/(Cp*Gy) = f(Re)
+// Therefore
+// h = Cp*Gy*f(Re)/(Pr)^(2/3) = 20*(Gy)^0.5 for carbon dioxide
+
+// Since Re = row*v*l/u = Gy*l/u, where 'l' is a characteristic length, the function f(Re) must be compatible with 20*Gy^0.5 .Therefore, let f(Re) = bRe^n, where 'b' and 'n' are constants to be evaluated. Then,
+
+// h = (Cp*Gy*b/Pr^(2/3))*(l*Gy/u)^n = 20*Gy^0.5
+// Comparing both sides of equation, we get
+// n+1 =0.5
+// Therefore
+n = -0.5;
+// Data on the properties of C02 at 300 K and 1 bar
+u = 1.5*10^-5; // [viscosity, P]
+Pr = 0.77; // [Prandtl number]
+Cp = 853; // [J/kg.K]
+// Therefore
+// b = 5.086*l^0.5
+// j_D = j_H = f(Re) = 5.086*(l^0.5)*Re^-0.5
+// From Table 2.1
+// F = j_D*c*v/Sc^(2/3) = 5.086*(l^0.5)*c*v/(Re^0.5*Sc^(2/3)) = 5.086*(row*v*u)^0.5/(Mavg*Sc^(2/3))
+
+// Vapor pressure of benzene
+P_a = exp(15.9008-(2788.51/(T-52.36))); // [mm of Hg]
+P_a = P_a*101.3/760; // [kPa]
+
+// Parameter for a-benzene, b-nitrogen
+yi_a = 0.07; yi_b = 0.93;
+Tc_a = 562.2; Tc_b = 126.2; // [K]
+Pc_a = 48.9; Pc_b = 33.9; // [bar]
+M_a = 78.1; M_b = 28; // [gram/mole]
+V_a = 259; V_b = 89.8; // [cubic cm/mole]
+Z_a = 0.271; Z_b = 0.290;
+sigma_a = 5.349; sigma_b = 3.798; // [Angstrom]
+ek_a = 412.3; ek_b = 71.4; // [E/k, K]
+
+
+// From equation 2.52 and 2.53
+Tcm = yi_b*Tc_b+yi_a*Tc_a; // [K]
+Pcm = 10^6*R*Tcm*(yi_b*Z_b+yi_a*Z_a)/((yi_b*V_b+yi_a*V_a)*100000); // [bar]
+M_avg = yi_b*M_b+yi_a*M_a; // [kg/kmole]
+printf("Average molecular weight is %f kg/kmole\n\n",M_avg);
+row = P*M_avg/(R*T); // [kg/cubic m]
+printf("Density of mixture is %f kg/cubic m\n\n",row);
+// From equation 2.50
+Em = 0.176*(Tcm/(M_avg^3*Pcm^4))^(1/6); // [uP]^-1
+
+// From equation 2.51
+Trm = T/Tcm;
+f_Trm = (0.807*Trm^0.618)-(0.357*exp(-0.449*Trm))+(0.340*exp(-4.058*Trm))+0.018;
+// From equation 2.49
+u = f_Trm/Em; // [uP]
+u = u*10^-7; // [viscosity, kg/m.s]
+printf("Average viscosity of mixture is %e kg/m.s\n\n",u);
+
+// Calculating diffusivity of benzene using equation 1.49
+D_ab = 0.0986; // [square cm/s]
+Sc = u/(row*D_ab*10^-4); // [Schmidt number]
+
+F = 5.086*(row*v*u)^0.5/(M_avg*Sc^(2/3)); // [kmole/square m.s]
+printf("The required mass transfer coefficient is %e kmole/square m.s\n\n",F); \ No newline at end of file