summaryrefslogtreecommitdiff
path: root/858/CH8
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /858/CH8
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '858/CH8')
-rwxr-xr-x858/CH8/EX8.1/example_1.sce5
-rwxr-xr-x858/CH8/EX8.10/example_10.sce26
-rwxr-xr-x858/CH8/EX8.11/example_11.sce11
-rwxr-xr-x858/CH8/EX8.12/example_12.sce22
-rwxr-xr-x858/CH8/EX8.2/example_2.sce5
-rwxr-xr-x858/CH8/EX8.3/example_3.sce5
-rwxr-xr-x858/CH8/EX8.4/example_4.sce23
-rwxr-xr-x858/CH8/EX8.5/example_5.sce13
-rwxr-xr-x858/CH8/EX8.6/example_6.sce19
-rwxr-xr-x858/CH8/EX8.7/example_7.sce29
-rwxr-xr-x858/CH8/EX8.8/example_8.sce23
-rwxr-xr-x858/CH8/EX8.9/example_9.sce24
12 files changed, 205 insertions, 0 deletions
diff --git a/858/CH8/EX8.1/example_1.sce b/858/CH8/EX8.1/example_1.sce
new file mode 100755
index 000000000..56bef86fa
--- /dev/null
+++ b/858/CH8/EX8.1/example_1.sce
@@ -0,0 +1,5 @@
+clc
+clear
+printf("example 8.1 page number 334\n\n")
+
+printf("this is a theoritical problem, book shall be referred for solution")
diff --git a/858/CH8/EX8.10/example_10.sce b/858/CH8/EX8.10/example_10.sce
new file mode 100755
index 000000000..214357886
--- /dev/null
+++ b/858/CH8/EX8.10/example_10.sce
@@ -0,0 +1,26 @@
+clc
+clear
+printf("example 8.10 page number 370\n\n")
+
+//to find the rate of oil flow in l/s
+
+density_oil=900; //in kg/m3
+viscosity_oil=38.8*10^-3; //in Pa-s
+density_water = 1000; //in kg/m3
+diameter=0.102 //in m
+manometer_reading=0.9; //m of water
+delta_H=manometer_reading*(density_water-density_oil)/density_oil;
+printf("manometer reading as m of oil = %f m",delta_H)
+
+maximum_velocity=(2*9.8*delta_H)^0.5;
+printf("\n\nmaximum_velocity(Vmax) = %f m/s",maximum_velocity)
+
+Re=diameter*maximum_velocity*density_oil/viscosity_oil;
+printf("\n\nif Re<4000 then v=0.5*Vmax Re = %f",Re)
+if Re<4000 then velocity=maximum_velocity*0.5;
+end
+
+printf("\n\nvelocity = %f m/s",velocity)
+
+flow_rate=(3.14/4)*diameter^2*velocity*1000;
+printf("\n\nflow rate =%f litre/s",flow_rate)
diff --git a/858/CH8/EX8.11/example_11.sce b/858/CH8/EX8.11/example_11.sce
new file mode 100755
index 000000000..4ccc8f228
--- /dev/null
+++ b/858/CH8/EX8.11/example_11.sce
@@ -0,0 +1,11 @@
+clc
+clear
+printf("example 8.11 page number 372\n\n")
+
+//to find the maximum capacity of keroscene
+flow_rate_steel=1.2; //l/s
+density_steel=7.92;
+density_kerosene=0.82;
+density_water=1;
+flow_rate_kerosene =(((density_steel-density_kerosene)/density_kerosene)/((density_steel-density_water)/density_water))^0.5*flow_rate_steel
+printf("maximum_flow rate of kerosene = %f litre/s",flow_rate_kerosene)
diff --git a/858/CH8/EX8.12/example_12.sce b/858/CH8/EX8.12/example_12.sce
new file mode 100755
index 000000000..a4b9512fb
--- /dev/null
+++ b/858/CH8/EX8.12/example_12.sce
@@ -0,0 +1,22 @@
+clc
+clear
+printf("example 8.12 page number 373\n\n")
+
+//to find the rate of flow of flue gas
+
+initial_CO2 = 0.02; //weight fraction
+flow_rate_CO2 = 22.5; //gm/s
+final_CO2=0.031; //weight fraction
+
+//flow rate of flue gas =x
+//amount of CO2 entering = 0.02*x
+//amount of CO2 leaving = 0.02x+0.0225
+//amount of gas leaving = x+0.0225
+//amount of CO2 leaving = 0.031*(x+0.0225)
+
+deff('y=f(x)','y=initial_CO2*x+0.0225 - 0.031*(x+0.0225)');
+
+flow_rate_flue_gas=fsolve(0,f)
+
+printf("flow rate of flue gas = %f kg/s",flow_rate_flue_gas)
+
diff --git a/858/CH8/EX8.2/example_2.sce b/858/CH8/EX8.2/example_2.sce
new file mode 100755
index 000000000..c7ef7e59f
--- /dev/null
+++ b/858/CH8/EX8.2/example_2.sce
@@ -0,0 +1,5 @@
+clc
+clear
+printf("example 8.2 page number 335\n\n")
+
+printf("this is a theoritical problem, book shall be referred for solution")
diff --git a/858/CH8/EX8.3/example_3.sce b/858/CH8/EX8.3/example_3.sce
new file mode 100755
index 000000000..02e7a6cf6
--- /dev/null
+++ b/858/CH8/EX8.3/example_3.sce
@@ -0,0 +1,5 @@
+clc
+clear
+printf("example 8.3 page number 335\n\n")
+
+printf("this is a theoritical problem, book shall be referred for solution")
diff --git a/858/CH8/EX8.4/example_4.sce b/858/CH8/EX8.4/example_4.sce
new file mode 100755
index 000000000..3b63450cf
--- /dev/null
+++ b/858/CH8/EX8.4/example_4.sce
@@ -0,0 +1,23 @@
+clc
+clear
+printf("example 8.4 page number 336\n\n")
+
+//Chapter 8 : Measuring Devices
+//Given: Balance Height=4m
+//side 1-air, side 2:- N2-H2 mixture
+
+pressure_difference = 3.4 //in mm water
+pressure = 1.0133*10^5 //in pa
+temperatue = 293 //in K
+mass_of_air = 29 //in Kg
+density_air = pressure/(temperatue*8314)*mass_of_air //in kg/m3
+printf("Density of air = %f kg/cu m",density_air)
+
+delta_p = pressure_difference*9.8 //in pascal, acceleration due to gravity, g=9.8
+Height=4
+density_difference = delta_p/(9.8*Height);
+printf("\n\nDensity difference = %f kg/cu m",density_difference)
+
+density_mixture= density_air-density_difference; //in kg/m3
+printf("\n\nDensity of mixture = %f kg/cu m",density_mixture)
+
diff --git a/858/CH8/EX8.5/example_5.sce b/858/CH8/EX8.5/example_5.sce
new file mode 100755
index 000000000..eb168e7f9
--- /dev/null
+++ b/858/CH8/EX8.5/example_5.sce
@@ -0,0 +1,13 @@
+clc
+clear
+printf("example 8.5 page number 341\n\n")
+
+//to find viscosity of oil
+diameter=0.6; //in m
+disk_distance=1.25*10^-3; //in m
+speed=5; //revolutions/min
+torque=11.5; //in Joules
+
+//we know that torque= pi*omega*viscosity*radius^4/2*disc_distance
+viscosity=(2*disk_distance*torque)/(3.14*(10*3.14)*(diameter/2)^4);
+printf("viscosity = %f Pa-s",viscosity)
diff --git a/858/CH8/EX8.6/example_6.sce b/858/CH8/EX8.6/example_6.sce
new file mode 100755
index 000000000..6eb51c96a
--- /dev/null
+++ b/858/CH8/EX8.6/example_6.sce
@@ -0,0 +1,19 @@
+clc
+clear
+printf("example 8.6 page number 342\n\n")
+
+//to find the viscosity of solution using given parameters
+
+diameter =10; //in mm
+density_of_solution = 1750; //in kg/m3
+density_of_air = 1.2; //in kg/m3
+velocity = 0.9; //in mm/s
+viscosity = (density_of_solution-density_of_air)*9.8*(diameter*10^-3)^2/(18*velocity*10^-3); //expression for finding viscosity
+
+printf("viscosity of solution = %f Pa-s",viscosity)
+
+
+//checking stoke's region validity
+v=(0.2*viscosity)/(density_of_solution*diameter*10^-3);
+if v>0.9 then printf("\n\nsystem follows stokes law")
+end
diff --git a/858/CH8/EX8.7/example_7.sce b/858/CH8/EX8.7/example_7.sce
new file mode 100755
index 000000000..d62873e68
--- /dev/null
+++ b/858/CH8/EX8.7/example_7.sce
@@ -0,0 +1,29 @@
+clc
+clear
+printf("example 8.7 page number 367\n\n")
+
+//to find the flow rate in an orifice
+density_of_water = 1000; //in kg/m3
+viscosity = 1*10^-3; //in Pa-s
+pipe_diameter = 250; //in mm
+orifice_diameter = 50; // in mm
+density_of_mercury = 13600; // in mm
+manometer_height = 242; //in mm
+
+//calculation
+height_water_equivalent = (density_of_mercury-density_of_water)*(manometer_height*10^-3)/(density_of_water) //in m
+
+//assuming Re>30000
+Co = 0.61;
+velocity = Co*(2*9.8*height_water_equivalent/(1-(orifice_diameter/pipe_diameter)^4))^0.5; //in m/s
+
+//checking Reynold's number
+Re = (orifice_diameter*10^-3*velocity*density_of_water)/viscosity;
+printf("reynolds number = %f\nwhich is greater than 30000",Re)
+
+if Re>30000 then printf("\n\nvelocity of water = %f m/s",velocity)
+
+end
+
+rate_of_flow = (3.14*(orifice_diameter*10^-3)^2/4)*velocity*density_of_water;
+printf("\n\nrate of flow = %f litre/s",rate_of_flow)
diff --git a/858/CH8/EX8.8/example_8.sce b/858/CH8/EX8.8/example_8.sce
new file mode 100755
index 000000000..02cae8bc4
--- /dev/null
+++ b/858/CH8/EX8.8/example_8.sce
@@ -0,0 +1,23 @@
+clc
+clear
+printf("example 8.8 page number 368\n\n")
+
+//to find the coefficient of discharge for converging cone
+
+pipe_diameter=0.15; //in m
+venturi_diameter=0.05; //in m
+pressure_drop=0.12; //m of water
+flow_rate=3; //in kg/s
+density = 1000; //in kg/m3
+viscosity = 0.001 //in Pa-s
+
+velocity = ((4/3.14)*flow_rate)/(venturi_diameter^2*density);
+printf("velociy = %f m/s",velocity)
+
+//calculating coefficient of discharge
+Cv=velocity*((1-(venturi_diameter/pipe_diameter)^4)/(2*9.8*pressure_drop))^0.5;
+printf("\n\ncoefficient of discharge = %f",Cv)
+
+//calculating reynold's number
+Re = velocity*(venturi_diameter/pipe_diameter)^2*pipe_diameter*density/viscosity;
+printf("\n\nreynolds No = %f",Re)
diff --git a/858/CH8/EX8.9/example_9.sce b/858/CH8/EX8.9/example_9.sce
new file mode 100755
index 000000000..650fd76a7
--- /dev/null
+++ b/858/CH8/EX8.9/example_9.sce
@@ -0,0 +1,24 @@
+clc
+clear
+printf("example 8.9 page number 369\n\n")
+
+//to find pA and pB
+//part 1
+
+h1=0.66; //in m
+h2=0.203; //in m
+h3=0.305 //in m
+density=1000; //in kg/m3
+pB=68900; //in Pa
+s1=0.83;
+s2=13.6;
+disp("part 1")
+pA=pB+(h2*s2-(h1-h3)*s1)*density*9.81; //in Pa
+printf("\npressure at A = %f Pa\n",pA)
+
+disp("part 2")
+pA1=137800 //in Pa
+pressure=735 //mm Hg
+pB1=pA1-(h2*s2-(h1-h3)*s1)*density*9.81;
+pressure_B=(pB1-pressure*133.3)/9810; //m of water
+printf("\npressure at B = %f m of water",pressure_B)