summaryrefslogtreecommitdiff
path: root/858/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /858/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '858/CH4')
-rwxr-xr-x858/CH4/EX4.1/example_1.sce9
-rwxr-xr-x858/CH4/EX4.10/example_10.sce13
-rwxr-xr-x858/CH4/EX4.11/example_11.sce23
-rwxr-xr-x858/CH4/EX4.12/example_12.sce19
-rwxr-xr-x858/CH4/EX4.13/example_13.sce22
-rwxr-xr-x858/CH4/EX4.14/example_14.sce20
-rwxr-xr-x858/CH4/EX4.15/example_15.sce20
-rwxr-xr-x858/CH4/EX4.16/example_16.sce24
-rwxr-xr-x858/CH4/EX4.17/example_17.sce20
-rwxr-xr-x858/CH4/EX4.18/example_18.sce20
-rwxr-xr-x858/CH4/EX4.19/example_19.sce10
-rwxr-xr-x858/CH4/EX4.2/example_2.sce5
-rwxr-xr-x858/CH4/EX4.20/example_20.sce10
-rwxr-xr-x858/CH4/EX4.21/example_21.sce26
-rwxr-xr-x858/CH4/EX4.22/example_22.sce29
-rwxr-xr-x858/CH4/EX4.23/example_23.sce17
-rwxr-xr-x858/CH4/EX4.3/example_3.sce14
-rwxr-xr-x858/CH4/EX4.4/example_4.sce4
-rwxr-xr-x858/CH4/EX4.5/example_5.sce9
-rwxr-xr-x858/CH4/EX4.6/example_6.sce4
-rwxr-xr-x858/CH4/EX4.7/example_7.sce4
-rwxr-xr-x858/CH4/EX4.8/example_8.sce31
-rwxr-xr-x858/CH4/EX4.9/example_9.sce18
23 files changed, 371 insertions, 0 deletions
diff --git a/858/CH4/EX4.1/example_1.sce b/858/CH4/EX4.1/example_1.sce
new file mode 100755
index 000000000..d87134ff3
--- /dev/null
+++ b/858/CH4/EX4.1/example_1.sce
@@ -0,0 +1,9 @@
+clc
+clear
+printf("example 4.1 page number 125\n\n")
+
+//to find water compressibility
+delta_p=70; //in bar
+Et=20680 //in bar
+compressibility = delta_p/Et;
+printf("compressibilty of water = %f",compressibility)
diff --git a/858/CH4/EX4.10/example_10.sce b/858/CH4/EX4.10/example_10.sce
new file mode 100755
index 000000000..ed8b4f6e7
--- /dev/null
+++ b/858/CH4/EX4.10/example_10.sce
@@ -0,0 +1,13 @@
+clc
+clear
+printf("example 4.10 page number 139\n\n")
+
+//to find the temperature increase
+
+Q=0.001*10^5 //in J/s
+w=0.001*1000 //in kg/s
+density=1000 //in kg/m3
+cp=4.19*10^3 //in J/kg K
+
+delta_T=Q/(w*cp);
+printf("Temperature increase = %f degree celcius",delta_T)
diff --git a/858/CH4/EX4.11/example_11.sce b/858/CH4/EX4.11/example_11.sce
new file mode 100755
index 000000000..a10120041
--- /dev/null
+++ b/858/CH4/EX4.11/example_11.sce
@@ -0,0 +1,23 @@
+clc
+clear
+printf("example 4.11 page number 142\n\n")
+
+//to find the pressure
+
+u1=0; //in m/s
+ws=0;
+P1=0.7*10^5 //in Pa
+P3=0
+density=1000 //in kg/m3
+
+u3=((2*(P1-P3))/density)^0.5;
+printf("u3 = %f m/s",u3)
+
+ratio_area=0.5;
+u2=u3/ratio_area;
+printf("\n\nu2 = %f m/s",u2)
+
+//applying bernoulli's equation
+P2=1.7*10^5-((density*u2^2)/2)
+printf("\n\nP2 = %f Pa",P2)
+printf("\nthis flow is physically unreal")
diff --git a/858/CH4/EX4.12/example_12.sce b/858/CH4/EX4.12/example_12.sce
new file mode 100755
index 000000000..0d524f6f8
--- /dev/null
+++ b/858/CH4/EX4.12/example_12.sce
@@ -0,0 +1,19 @@
+clc
+clear
+printf("example 4.12 page number 143\n\n")
+
+//to find the power requirements
+
+Q=3800/(24*3600) //in m3/s
+d=0.202 //in m
+
+u=Q/((3.14/4)*d^2); //in m/s
+delta_P=5.3*10^6 //in Pa
+density=897 //in kg/m3
+F=delta_P/density; //in J/kg
+ws=9.8*30+F;
+mass_flow_rate= Q*density;
+power=(ws*mass_flow_rate)/0.6;
+
+printf("power required = %f kW",power/1000)
+
diff --git a/858/CH4/EX4.13/example_13.sce b/858/CH4/EX4.13/example_13.sce
new file mode 100755
index 000000000..6d0973283
--- /dev/null
+++ b/858/CH4/EX4.13/example_13.sce
@@ -0,0 +1,22 @@
+clc
+clear
+printf("example 4.13 page number 146\n\n")
+
+//to find the tube length
+density=1000 //in kg/m3
+viscosity=1*10^-3 //in Pa s
+P=100*1000 //in Pa
+
+vdP=P/density;
+
+Q=2.5*10^-3/(24*3600)
+A=3.14*(0.0005)^2/4;
+u=Q/A;
+printf("u = %f m/s",u)
+
+Re=density*u*0.0005/viscosity;
+printf("\n\nRe = %f",Re)
+
+//F=18.86*L
+L=(-u^2+vdP)/18.86;
+printf("\n\nL = %f m",L)
diff --git a/858/CH4/EX4.14/example_14.sce b/858/CH4/EX4.14/example_14.sce
new file mode 100755
index 000000000..4cf05a660
--- /dev/null
+++ b/858/CH4/EX4.14/example_14.sce
@@ -0,0 +1,20 @@
+clc
+clear
+printf("example 4.14 page number 151\n\n")
+
+//to find the discharge pressure
+d=0.025 //in m
+u=3 //in m/s
+density=894 //in kg/m3
+viscosity=6.2*10^4 //in Pa-s
+
+Re=(u*d*density)/viscosity;
+f=0.0045;
+L=50;
+
+delta_P=2*f*density*u^2*(L/d)
+printf("frictional head loss = %f kPa",delta_P/1000)
+
+required_P=25*density*9.8;
+total_head=delta_P+required_P;
+printf("\n\ntotal pressure head = %f bar",total_head/10^5)
diff --git a/858/CH4/EX4.15/example_15.sce b/858/CH4/EX4.15/example_15.sce
new file mode 100755
index 000000000..2aa7c554e
--- /dev/null
+++ b/858/CH4/EX4.15/example_15.sce
@@ -0,0 +1,20 @@
+clc
+clear
+printf("example 4.15 page number 152\n\n")
+
+//to find the level difference
+
+Q=0.8*10^-3; //in m3/s
+d=0.026 //in m
+A=(3.14*(d^2))/4 //in m2
+
+u=Q/A; //in m/s
+density=800 //in kg/m3
+viscosity=0.0005 //in Pa-s
+
+Re=(u*density*d)/viscosity;
+f=0.079*(Re)^-0.25;
+L=60
+h_f=2*f*((u^2)/9.8)*(L/d);
+
+printf("level difference = %f m",h_f)
diff --git a/858/CH4/EX4.16/example_16.sce b/858/CH4/EX4.16/example_16.sce
new file mode 100755
index 000000000..ad8351654
--- /dev/null
+++ b/858/CH4/EX4.16/example_16.sce
@@ -0,0 +1,24 @@
+clc
+clear
+printf("example 4.16 page number 153\n\n")
+
+//to find the engery cost
+delta_z=50; //in m
+L=290.36 //in m
+d=0.18 //in m
+Q=0.05 //in m3/s
+
+A=(3.14*d^2)/4; //in m2
+u=Q/A; //in m/s
+density=1180; //in kg/m3
+viscosity=0.0012 //in Pa-s
+Re=u*density*d/viscosity;
+
+f=0.004;
+sigma_F=2*f*u^2*L/d;
+ws=((9.8*50)+sigma_F)/0.6;
+mass_flow_rate=Q*density; //in Kg/s
+power=mass_flow_rate*ws/1000; //in KW
+energy_cost=power*24*0.8;
+
+printf("Energy cost = Rs %f",energy_cost)
diff --git a/858/CH4/EX4.17/example_17.sce b/858/CH4/EX4.17/example_17.sce
new file mode 100755
index 000000000..2656cc805
--- /dev/null
+++ b/858/CH4/EX4.17/example_17.sce
@@ -0,0 +1,20 @@
+clc
+clear
+printf("example 4.17 page number 154\n\n")
+
+//to find the pressure loss
+density=998 //in kg/m3
+viscosity=0.0008 //in Pa-s
+d=0.03 //in m
+u=1.2 //in m/s
+
+Re=density*d*u/viscosity;
+
+f=0.0088;
+D=1 //in m
+N=10
+L=3.14*D*N;
+delta_P=(2*f*u^2*L)/d; //in Pa
+delta_P_coil=delta_P*(1+(3.54*(d/D)));
+
+printf("frictional pressure drop = %f kPa",delta_P_coil)
diff --git a/858/CH4/EX4.18/example_18.sce b/858/CH4/EX4.18/example_18.sce
new file mode 100755
index 000000000..5f7d40a9f
--- /dev/null
+++ b/858/CH4/EX4.18/example_18.sce
@@ -0,0 +1,20 @@
+clc
+clear
+printf("example 4.18 page number 154\n\n")
+
+//to find pressure drop per unit length
+
+b=0.050 //in m
+a=0.025 //in m
+d_eq=b-a //in m
+density=1000 //in kg/m3
+u=3 //in m/s
+viscosity = 0.001
+
+Re=d_eq*u*density/viscosity;
+
+e=40*10^6 //in m
+f=0.0062;
+P_perunit_length=2*f*density*u^2/d_eq; //in Pa/m
+
+printf("pressure per unit length = %f Pa/m",P_perunit_length)
diff --git a/858/CH4/EX4.19/example_19.sce b/858/CH4/EX4.19/example_19.sce
new file mode 100755
index 000000000..eb57ad25e
--- /dev/null
+++ b/858/CH4/EX4.19/example_19.sce
@@ -0,0 +1,10 @@
+clc
+clear
+printf("example 4.19 page number 155\n\n")
+
+//to find the flow rate
+d = 0.3 //in m
+u = 17.63 //avg velocity in m/s
+
+q = (3.14/4)*d^2*u;
+printf("volumetric flow rate = %f cubic meter per second",q)
diff --git a/858/CH4/EX4.2/example_2.sce b/858/CH4/EX4.2/example_2.sce
new file mode 100755
index 000000000..faf242b5a
--- /dev/null
+++ b/858/CH4/EX4.2/example_2.sce
@@ -0,0 +1,5 @@
+clc
+clear
+printf("example 4.2 page number 125\n\n")
+
+disp("this is a theoritical problem,book shall be referred for solution")
diff --git a/858/CH4/EX4.20/example_20.sce b/858/CH4/EX4.20/example_20.sce
new file mode 100755
index 000000000..2ecddb63f
--- /dev/null
+++ b/858/CH4/EX4.20/example_20.sce
@@ -0,0 +1,10 @@
+clc
+clear
+printf("example 4.20 page number 156\n\n")
+
+//to find the size of pipe required
+d = 0.15 //in m
+u = (0.0191/0.15^2); //in m/s
+
+q = (3.14/4)*d^2*u;
+printf("volumetric flow rate = %f cubic meter/s",q)
diff --git a/858/CH4/EX4.21/example_21.sce b/858/CH4/EX4.21/example_21.sce
new file mode 100755
index 000000000..f00ef1cb9
--- /dev/null
+++ b/858/CH4/EX4.21/example_21.sce
@@ -0,0 +1,26 @@
+clc
+clear
+printf("example 4.21 page number 160\n\n")
+
+//to find the pressure gradient
+
+Q=0.0003 //in m3/s
+d=0.05 //in m
+A=(3.14*d^2)/4;
+
+u=Q/A;
+
+density=1000; //in kg/m3
+viscosity=0.001; //in Pa-s
+e=0.3;
+dp=0.00125; //particle diameter in m
+
+Re=(dp*u*density)/(viscosity*(1-e));
+fm=(150/Re)+1.75;
+L=0.5 //in m
+delta_Pf=fm*((density*L*u^2)/dp)*((1-e)/e^3); //in Pa
+
+//applying bernoulli's equation, we get
+delta_P=delta_Pf-(density*9.8*L);
+pressure_gradient=delta_P/(L*1000); //in kPa/m
+printf("required pressure gradient = %f kPa/m of packed height",pressure_gradient)
diff --git a/858/CH4/EX4.22/example_22.sce b/858/CH4/EX4.22/example_22.sce
new file mode 100755
index 000000000..8508ea21f
--- /dev/null
+++ b/858/CH4/EX4.22/example_22.sce
@@ -0,0 +1,29 @@
+clc
+clear
+printf("example 4.22 page number 163\n\n")
+
+//to find minimum fluidization velocity
+
+d=120*10^-6 //in m
+density=2500 //particle density in kg/m3
+e_min=0.45;
+density_water=1000 //in kg/m3
+viscosity=0.9*10^-3; //in Pa-s
+umf=(d^2*(density-density_water)*9.8*e_min^3)/(150*viscosity*(1-e_min));
+printf("minimum fludization velocity = %f m/s",umf)
+
+Re_mf=(d*umf*density_water)/(viscosity*(1-e_min));
+
+
+//given that uo/umf=10
+function[f] = F(e)
+ f = e^3+1.657*e-1.675;
+endfunction
+
+//initial guess
+x = 10;
+e = fsolve(x,F);
+
+printf("\n\ne = %f",e)
+length_ratio=(1-e_min)/(1-e);
+printf("\n\nratio of heights = %f",length_ratio)
diff --git a/858/CH4/EX4.23/example_23.sce b/858/CH4/EX4.23/example_23.sce
new file mode 100755
index 000000000..a8c7ddc34
--- /dev/null
+++ b/858/CH4/EX4.23/example_23.sce
@@ -0,0 +1,17 @@
+clc
+clear
+printf("example 4.23 page number 167\n\n")
+
+//to find the power requirements
+
+P=9807 //in Pa
+density=1000 //in kg/m3
+Q=250/(60*density)
+head=25 //in m
+
+w= head*Q*P; //in kW
+power_delivered=w/0.65;
+power_taken=power_delivered/0.9;
+
+printf("power_delivered = %f kW",power_delivered/1000)
+printf("\n\npower taken by motor = %f kW",power_taken/1000)
diff --git a/858/CH4/EX4.3/example_3.sce b/858/CH4/EX4.3/example_3.sce
new file mode 100755
index 000000000..89b3cddc0
--- /dev/null
+++ b/858/CH4/EX4.3/example_3.sce
@@ -0,0 +1,14 @@
+clc
+clear
+printf("example 4.3 page number 128\n\n")
+
+//to find the viscosity of oil
+
+F=0.5*9.8; //in N
+A=3.14*0.05*0.15; //in m2
+shear_stress=F/A; //in Pa
+printf("shear_stress = %f Pa",shear_stress)
+
+velocity_distribution =0.1/(0.05*10^-3);
+viscosity=shear_stress/velocity_distribution;
+printf("\n\nviscosity = %f Pa-s",viscosity)
diff --git a/858/CH4/EX4.4/example_4.sce b/858/CH4/EX4.4/example_4.sce
new file mode 100755
index 000000000..22ffeefa5
--- /dev/null
+++ b/858/CH4/EX4.4/example_4.sce
@@ -0,0 +1,4 @@
+clc
+clear
+printf("example 4.4 page number 130\n\n")
+printf("this is a theoritical problem,book shall be referred for solution")
diff --git a/858/CH4/EX4.5/example_5.sce b/858/CH4/EX4.5/example_5.sce
new file mode 100755
index 000000000..718f55335
--- /dev/null
+++ b/858/CH4/EX4.5/example_5.sce
@@ -0,0 +1,9 @@
+clc
+clear
+printf("example 4.5 page number 133\n\n")
+
+//to find variation of losses with velocity
+loss_ratio=3.6; //delta_P2/delta_P1=3.6
+velocity_ratio=2; //u2/u1=2
+n=log2(loss_ratio); //delta_P2/delta_P1=(u2/u1)^n
+printf("power constant = %f flow is turbulent",n)
diff --git a/858/CH4/EX4.6/example_6.sce b/858/CH4/EX4.6/example_6.sce
new file mode 100755
index 000000000..77bf07c1e
--- /dev/null
+++ b/858/CH4/EX4.6/example_6.sce
@@ -0,0 +1,4 @@
+clc
+clear
+printf("example 4.6 page number 133\n\n")
+printf("this is a theoritical problem,book shall be referred for solution")
diff --git a/858/CH4/EX4.7/example_7.sce b/858/CH4/EX4.7/example_7.sce
new file mode 100755
index 000000000..1d0b4af71
--- /dev/null
+++ b/858/CH4/EX4.7/example_7.sce
@@ -0,0 +1,4 @@
+clc
+clear
+printf("example 4.7 page number 134")
+disp("this is a theoritical problem,book shall be referred for solution")
diff --git a/858/CH4/EX4.8/example_8.sce b/858/CH4/EX4.8/example_8.sce
new file mode 100755
index 000000000..f0d9f2fd7
--- /dev/null
+++ b/858/CH4/EX4.8/example_8.sce
@@ -0,0 +1,31 @@
+clc
+clear
+printf("example 4.8 page number 137\n\n")
+
+//to find the boundary layer properties
+
+disp('part 1')
+x=0.05 //in m
+density=1000 //in kg/m3
+viscosity=1*10^-3 //in Pa-s
+u=1 //in m/s
+Re=(density*u*x)/viscosity;
+
+printf("Reynolds Number = %f",Re)
+
+thickness=4.65*x*(Re)^-0.5;
+printf("\nboundary layer thickness = %f m\n",thickness)
+
+disp('part 2')
+Re_x=3.2*10^5;
+x_cr=(Re_x*viscosity)/(density*u);
+printf("transition takes place at x = %f m\n",x_cr)
+
+disp('part 3')
+x=0.5 //in m
+Re=(density*u*x)/viscosity;
+thickness=0.367*x*(Re)^-0.2;
+printf("boundary layer thickness= %f m",thickness)
+
+t_sublayer=71.5*x*(Re)^-0.9;
+printf("\nsub layer thickness= %f m",t_sublayer)
diff --git a/858/CH4/EX4.9/example_9.sce b/858/CH4/EX4.9/example_9.sce
new file mode 100755
index 000000000..3ccdea2eb
--- /dev/null
+++ b/858/CH4/EX4.9/example_9.sce
@@ -0,0 +1,18 @@
+clc
+clear
+printf("example 4.9 page number 138\n\n")
+
+//to find the flow properties
+d1=0.05 //in m
+A1=(3.14*d1^2)/4;
+density_1=2.1 //in kg/m3
+u1=15 //in m/s
+P1=1.8; //in bar
+P2=1.3; //in bar
+
+w=density_1*A1*u1;
+density_2=density_1*(P2/P1);
+printf("density at section 2 = %f kg/cubic meter",density_2)
+
+u2=u1*(density_1/density_2)*(0.05/0.075)^2;
+printf("\n\nvelocity at section 2 = %f m/s",u2)