summaryrefslogtreecommitdiff
path: root/839/CH26
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /839/CH26
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '839/CH26')
-rwxr-xr-x839/CH26/EX26.1/Example_26_1.sce82
-rwxr-xr-x839/CH26/EX26.4/Example_26_4.sce28
-rwxr-xr-x839/CH26/EX26.5/Example_26_5.sce33
3 files changed, 143 insertions, 0 deletions
diff --git a/839/CH26/EX26.1/Example_26_1.sce b/839/CH26/EX26.1/Example_26_1.sce
new file mode 100755
index 000000000..0137dd78b
--- /dev/null
+++ b/839/CH26/EX26.1/Example_26_1.sce
@@ -0,0 +1,82 @@
+//clear//
+clear;
+clc;
+
+//Example 26.1
+//Given
+alpha = 5;
+per = 0.2; //[scf/ft^2-h-atm]
+Pf = 150; //[lbf/in.^2]
+Pp = 15; //[lbf/in.^2]
+
+//Solution
+//(a)
+R = Pp/Pf;
+//At the feed inlet
+xin = 0.209;
+//Using Eq.(26.17)
+A = alpha-1;
+B = 1-alpha-1/R-xin*(alpha-1)/R;
+C = alpha*xin/R;
+yi_in = (-B-sqrt(B^2-4*A*C))/(2*A);
+//At the discharge end
+xd = 0.05;
+//Using Eq.(26.17)
+A = alpha-1;
+B = 1-alpha-1/R-xd*(alpha-1)/R;
+C = alpha*xd/R;
+yi_d = (-B-sqrt(B^2-4*A*C))/(2*A);
+
+//For an approximate solution, these terminal compositions are
+//averaged to give
+ybar = (yi_in+yi_d)/2;
+//From an overall material balance
+//Basis
+Lin = 100; //[scfh]
+V = (Lin*xin-Lin*xd)/(ybar-xd);
+//disp(ybar,'and permeate composition is','percent',V/Lin*100,'The permeate in the feed is');
+
+
+//For more accurate calculation
+j = 2;
+yi_in(1) = 0.5148;
+x(1) = 0.209;
+y(1)= 0.5148;
+L = Lin;
+deltaV = [];
+deltaVybar = [];
+ybar = [];
+for i = 0.2:-0.01:xd
+x(j) = i;
+A = alpha-1;
+B = 1-alpha-1/R-x(j)*(alpha-1)/R;
+C = alpha*x(j)/R;
+yi_in(j) = (-B-sqrt(B^2-4*A*C))/(2*A);
+ybar(j-1) = (yi_in(j-1)+yi_in(j))/2;
+deltaV(j) = L*(x(j-1)-x(j))/(ybar(j-1)-x(j));
+V = sum(deltaV);
+L = Lin - V;
+deltaVybar(j) = deltaV(j-1)*ybar(j-1);
+deltaVybarsum = sum(deltaVybar);
+y(j-1) = deltaVybarsum/V;
+j = j+1;
+end
+disp(y($),'and permeate composition is','percent',V/Lin*100,'The permeate recovered');;
+
+
+//(b)
+//The membrane area obtained from the flux of A using
+//Eq.(26.29) and (26.13)
+//for the first increment x = 0.209 to x = 0.2
+deltaybar1 = 1.4856; //[scfh], for Lin = 100 scfh
+//At x = 0.209
+A1 = 0.209-0.1*0.5148;
+//At x = 0.2
+A2 = 0.2-0.1*(0.50);
+Aavg = (A1+A2)/2
+QAP1 = 0.2*10; //scfh/ft^3
+//for specified flow of 300 scfh
+deltaA = 1/2*1.486/Aavg*180; //[ft^2]
+//The calculation continued with increments of 0.01
+A = 211/2.0*180; //[ft^2]
+disp('ft^2',A,'The membrane area needed is')
diff --git a/839/CH26/EX26.4/Example_26_4.sce b/839/CH26/EX26.4/Example_26_4.sce
new file mode 100755
index 000000000..5da677be8
--- /dev/null
+++ b/839/CH26/EX26.4/Example_26_4.sce
@@ -0,0 +1,28 @@
+//clear//
+clear;
+clc;
+
+//Example 26.4
+//Given
+F = 10; //[gal/day-ft^3]
+Do = 300*10^-6; //[m]
+Di = 200*10^-6; //[m]
+vi = 0.5; //[cm/s]
+rho = 1; //[g/cm^3]
+mu = 0.01; //[g/cm-s], assumed
+f = 0.97;
+
+//Solution
+//For 10 gal/day-ft^2
+Jw = F*231*16.3871/(24*3600*929); //[cm/s]
+Nre = Do*100*vi*rho/mu;
+Ds = 1.6*10^-5; //[cm^2/s]
+Nsc = mu/(rho*Ds);
+
+//Using Eq.(12.69), Analogously to mass transfer
+Nsh = (0.35+0.56*Nre^0.52)/Nsc^-0.3;
+kc = Nsh*Ds/(Do*100); //[cm/s]
+//From Eq.(26.49)
+gama = Jw*f/kc;
+disp('A concentration differnce of 12 percent will not be significant till good flow distribution is maintained');
+
diff --git a/839/CH26/EX26.5/Example_26_5.sce b/839/CH26/EX26.5/Example_26_5.sce
new file mode 100755
index 000000000..4656b61de
--- /dev/null
+++ b/839/CH26/EX26.5/Example_26_5.sce
@@ -0,0 +1,33 @@
+//clear//
+clear;
+clc;
+
+//Example 26.5
+//Given (from Example 26.4)
+F = 10; //[gal/day-ft^2], based on external area
+Do = 300*10^-6; //[m]
+Di = 200*10^-6; //[m]
+vi = 0.5; //[cm/s]
+rho = 1; //[g/cm^3]
+mu = 10^-3; //[Pa-s], assumed
+f = 0.97;
+L = 3; //[m]
+
+//Solution
+//(a)
+//Jw based on area
+Jw = 4.72*10^-4*Do/Di*10^-2; //[m/s]
+dt = 200*10^-6; //[m]
+D = dt; //[m]
+//From Eq.(26.53)
+Vbar = 4*(Jw)*L/Di; //[m/s]
+//From Eq.(26.56)
+delta_ps = (Vbar*32*mu*L)/(D)^2*(1/2)/10^5; //[atm]
+disp('atm',delta_ps,'pressure drop = ','m/s',Vbar,'exit velocity = ');
+
+//(b)
+//If the fibres are open at both ends, the effective length is 1.5m and
+//the exit velocity is half as great. The pressure drop is one-fourth as
+//large as it was:
+deltaP = delta_ps/4; //[atm]
+disp('atm',deltaP,'pressure drop (if both ends are open) = ')