diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /839/CH21 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '839/CH21')
-rwxr-xr-x | 839/CH21/EX21.1/Example_21_1.sce | 26 | ||||
-rwxr-xr-x | 839/CH21/EX21.2/Example_21_2.sce | 23 | ||||
-rwxr-xr-x | 839/CH21/EX21.3/Example_21_3.sce | 26 | ||||
-rwxr-xr-x | 839/CH21/EX21.4/Example_21_4.sce | 32 | ||||
-rwxr-xr-x | 839/CH21/EX21.5/Example_21_5.sce | 42 | ||||
-rwxr-xr-x | 839/CH21/EX21.6/Example_21_6.sce | 17 |
6 files changed, 166 insertions, 0 deletions
diff --git a/839/CH21/EX21.1/Example_21_1.sce b/839/CH21/EX21.1/Example_21_1.sce new file mode 100755 index 000000000..a3c3e5fca --- /dev/null +++ b/839/CH21/EX21.1/Example_21_1.sce @@ -0,0 +1,26 @@ +//clear//
+clear;
+clc;
+
+//Exapmle 21.1
+//Given
+yA = 0.20;
+yAi = 0.10;
+
+//Solution
+//(a)
+//Let A = Dv*rho_M/BT
+A = 1; //assumed
+
+//Using Eq.(21.19), for euilmolal diffusion,
+JA = A*(yA-yAi);
+//Form Eq.(21.24), for one way diffusion,
+NA = A*log((1-yAi)/(1-yA));
+NAbyJA = NA/JA;
+disp('In this case the transfer rate with one-way diffusion is',NAbyJA-1,'percent greater than that with equimolal diffusion');
+
+//(b)
+//Whwn, b = BT/2
+A = A*2;
+yA = 1-exp(NA/2)*(1-yA)
+disp(yA,'The value of yA halfway through the layer for one-way diffusion is');
diff --git a/839/CH21/EX21.2/Example_21_2.sce b/839/CH21/EX21.2/Example_21_2.sce new file mode 100755 index 000000000..09c79152c --- /dev/null +++ b/839/CH21/EX21.2/Example_21_2.sce @@ -0,0 +1,23 @@ +//clear//
+clear;
+clc;
+
+//Example 21.2
+//Given
+K = 273.16
+T = 100+K ; //[K]
+P = 10; //[atm]
+//From Table 21.1
+TcA = 198+K; //[K]
+TcB = -147+K; //[K]
+rho_cA = 0.552; //[g/cm^3]
+rho_cB = 0.311; //[g/cm^3]
+MA = 137.5;
+MB = 28;
+
+//Solution
+VcA = MA/rho_cA //[cm^3/g mol]
+VcB = MB/rho_cB //[cm^3/g mol]
+//Substituing in Eq.(21.25)
+Dv = (0.01498*T^1.81*(1/MA+1/MB)^0.5)/(P*(TcA*TcB)^0.1405*(VcA^0.4+VcB^0.4)^2); //[cm^2/s]
+disp('cm^2/s',Dv,'Volumetric Diffusivity (Dv) = ')
diff --git a/839/CH21/EX21.3/Example_21_3.sce b/839/CH21/EX21.3/Example_21_3.sce new file mode 100755 index 000000000..52b624bef --- /dev/null +++ b/839/CH21/EX21.3/Example_21_3.sce @@ -0,0 +1,26 @@ +//clear//
+clear;
+clc;
+
+//Example 21.3
+//Given
+//1 = benzene and 2 = toluene
+M1 = 78.11;
+M2 = 92.13;
+T1_bp = 80.1+273; //[K]
+T2_bp = 110.6+273; //[K]
+VA1 = 96.5; //[cm^3/mol]
+VA2 = 118.3; //[cm^3/mol]
+mu1 = 0.24; //[cP]
+mu2 = 0.26; //[cP]
+T = 110+273; //[K]
+//Solution
+//From Eq.(21.26)
+//For benzene in toulene,
+Dv1 = 7.4*10^-8*(M2)^0.5*T/(mu2*VA1^0.6); //[cm^2/s]
+
+//For toluene in benzene,
+Dv2 = 7.4*10^-8*(M1)^0.5*T/(mu1*VA2^0.6); //[cm^2/s]
+
+disp('cm^2/s',Dv1,'Diffusivity of benzene in toluene is');
+disp('cm^2/s',Dv2,'Diffusivity of toluene in benzene is');
diff --git a/839/CH21/EX21.4/Example_21_4.sce b/839/CH21/EX21.4/Example_21_4.sce new file mode 100755 index 000000000..bbc99599b --- /dev/null +++ b/839/CH21/EX21.4/Example_21_4.sce @@ -0,0 +1,32 @@ +//clear//
+clear;
+clc;
+
+//Example 21.4
+//Given
+Nre = 20000;
+T = 40; //[C]
+D = 2; //[in.]
+Dv1 = 0.288; //[cm^2/s], for water-air
+Dv2 = 0.145; //[cm^2/s], for ethanol-air
+//Solution
+//For air at 40 C
+rho = 29/22410*273.16/313.16; //[g/cm^3]
+mu = 0.0186; //[cP], from Appendix 8
+mubyrho = mu*10^-2/rho; //[cm^2/s]
+
+//(a)
+// For the air-water system,
+Nsc = mubyrho/Dv1;
+//Form Eq.(21.54)
+Nsh = 0.023*(Nre/2)^0.81*Nsc^0.44;
+//In the film theory kc = D/BT and since Nsh = kc*D/Dv
+BT1 = D/Nsh; //[in.]
+disp('in.',BT1,'Effective thickness of the gas film is')
+
+//(b)
+//For the system air-ethanol,
+Nsc = mubyrho/Dv2;
+Nsh = 0.023*(Nre/2)^0.81*Nsc^0.44;
+BT2 = D/Nsh; //[in.]
+disp('in.',BT2,'Effective thickness of the gas film is')
diff --git a/839/CH21/EX21.5/Example_21_5.sce b/839/CH21/EX21.5/Example_21_5.sce new file mode 100755 index 000000000..1ab862d43 --- /dev/null +++ b/839/CH21/EX21.5/Example_21_5.sce @@ -0,0 +1,42 @@ +//clear//
+clear;
+clc;
+
+//Example 21.5
+//Given
+
+T = 110; //[C]
+P = 1; //[atm]
+mu = 0.26; //[cP]
+Dvx = 6.74*10^-5; //[cm^2/s]
+rho_mx = 8.47; //[mol/L]
+Dvy = 0.0494; //[cm^2/s]
+rho_my = 0.0318; //[mol/L]
+
+//(a)
+//Using Eq.(21.78)
+kybykx = (Dvy/Dvx)^0.5*(rho_my/rho_mx);
+//The gas-film coefficient predicted is only 10 percent
+//and if m=1, 90 percent of the overall resistance to mass
+//transfer would be in the gas film.
+disp(kybykx*100,'fraction of the overall resistance in the gas phase is');
+
+//(b)
+//Assuming the column is operated at the same factor F
+//Gas film:
+rho_myprime = 0.00894; //[mol/L]
+Dvyprime = (341/383)^1.81*(Dvy/0.25);
+deltakyprime = sqrt(Dvyprime/Dvy)*rho_myprime/rho_my;
+//Liquid film:
+rho_mxprime = 8.93; //[mol/L]
+muprime = 0.35; //[cP]
+Dvxprime =(341/383)*0.26*Dvx/muprime;
+deltakxprime = sqrt(Dvxprime/Dvx)*(rho_mxprime/rho_mx);
+//kyprime = deltakyprime*ky;
+//kxprime = deltakxprime/0.102*ky;
+//At 1 atm and ky = 0.102kx and Ky = 0.907/ky
+//Kyprime = 0.476*ky
+//For overall transfer units
+NOy = 2*0.476/0.53;
+neta = 1-exp(-NOy);
+disp(neta,'The efficieny will be')
diff --git a/839/CH21/EX21.6/Example_21_6.sce b/839/CH21/EX21.6/Example_21_6.sce new file mode 100755 index 000000000..4fabaae25 --- /dev/null +++ b/839/CH21/EX21.6/Example_21_6.sce @@ -0,0 +1,17 @@ +//clear//
+clear;
+clc;
+
+//Example 21.6
+//Given
+Dvprime = 10^-7; //[cm^2/s]
+rp = 0.04/2; //[cm]
+t = 30*60; //[s]
+//Then,
+beeta = Dvprime*t/rp^2;
+//form Fig. 10.6
+phi = 0.26;
+// Murphree efficiency
+neta_M = 1-phi;
+//Here the average efficieny is nearly equal to the Murphree efficiency.
+disp(4/neta_M,'The actual number of stages is')
|