diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /83/CH2 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '83/CH2')
-rwxr-xr-x | 83/CH2/EX2.1/example_2_1.sce | 16 | ||||
-rwxr-xr-x | 83/CH2/EX2.1/result_example_2_1.txt | 3 | ||||
-rwxr-xr-x | 83/CH2/EX2.2/example_2_2.sce | 35 | ||||
-rwxr-xr-x | 83/CH2/EX2.2/result_example_2_2.txt | 9 | ||||
-rwxr-xr-x | 83/CH2/EX2.3/example_2_3.sce | 48 | ||||
-rwxr-xr-x | 83/CH2/EX2.3/result_example_2_3.txt | 12 | ||||
-rwxr-xr-x | 83/CH2/EX2.5/example_2_5.sce | 34 | ||||
-rwxr-xr-x | 83/CH2/EX2.5/result_example_2_5.txt | 15 | ||||
-rwxr-xr-x | 83/CH2/EX2.6/example_2_6.sce | 13 | ||||
-rwxr-xr-x | 83/CH2/EX2.6/result_example_2_6.txt | 8 | ||||
-rwxr-xr-x | 83/CH2/EX2.7/example_2_7.sce | 43 | ||||
-rwxr-xr-x | 83/CH2/EX2.7/results_example_2_7.txt | 28 |
12 files changed, 264 insertions, 0 deletions
diff --git a/83/CH2/EX2.1/example_2_1.sce b/83/CH2/EX2.1/example_2_1.sce new file mode 100755 index 000000000..a05dcb8c0 --- /dev/null +++ b/83/CH2/EX2.1/example_2_1.sce @@ -0,0 +1,16 @@ +//Chapter 2 +//Example 2.1 +//page 56 +//To find GMD of the conductor +//From the given the text book,leaving out the factor of "r",we have the seven possible distances +clear;clc; +D1=0.7788*2*2*(2*sqrt(3))*4*(2*sqrt(3))*2; +//since there are 7 identical conductors,the above products remains same dor all D's +D2=D1; +D3=D1; +D4=D1; +D5=D1; +D6=D1; +D7=D1; +Ds=(D1*D2*D3*D4*D5*D6*D7)^(1/(7*7)); +printf("\n GMD of the conductor is %0.4fr",Ds); diff --git a/83/CH2/EX2.1/result_example_2_1.txt b/83/CH2/EX2.1/result_example_2_1.txt new file mode 100755 index 000000000..0c9d80cff --- /dev/null +++ b/83/CH2/EX2.1/result_example_2_1.txt @@ -0,0 +1,3 @@ + + + GMD of the conductor is 2.2578r diff --git a/83/CH2/EX2.2/example_2_2.sce b/83/CH2/EX2.2/example_2_2.sce new file mode 100755 index 000000000..c8680e6b9 --- /dev/null +++ b/83/CH2/EX2.2/example_2_2.sce @@ -0,0 +1,35 @@ +//Chapter 2 +//Example 2.2 +//page 57 +//To find reactance of the conductor +clear;clc; +f=50; //frequency +D=5.04; //diameter of the entire ACSR +d=1.68; //diameter of each conductor +Dsteel=D-2*d; //diameter of steel strand +//As shown in fig +D12=d; +D13=(sqrt(3)*d); +D14=2*d; +D15=D13; +D16=D12; +//neglecting the central sttel conductor,we have the 6 possibilities +D1=(0.7788*d)*D12*D13*D14*D15*D16; +//we have total of 6 conductors,hence +D2=D1; +D3=D1; +D4=D1; +D5=D1; +D6=D1; +Ds=(D1*D2*D3*D4*D5*D6)^(1/(6*6));//GMR; +//since the spacing between lines is 1m=100cm +l=100; +L=0.461*log10(l/Ds); //Inductance of each conductor +Ll=2*L; // loop inductance +Xl=2*%pi*f*Ll*10^(-3);//reactance of the line +printf("\n\nInductance of each conductor=%0.4f mH/km\n\n",L); +printf("Loop Inductance=%0.4f mH/km\n\n",Ll); +printf("Loop Reactance=%f ohms/km\n\n",Xl); + + + diff --git a/83/CH2/EX2.2/result_example_2_2.txt b/83/CH2/EX2.2/result_example_2_2.txt new file mode 100755 index 000000000..68706e8c8 --- /dev/null +++ b/83/CH2/EX2.2/result_example_2_2.txt @@ -0,0 +1,9 @@ + + + +Inductance of each conductor=0.7667 mH/km + +Loop Inductance=1.5334 mH/km + +Loop Reactance=0.481723 ohms/km + diff --git a/83/CH2/EX2.3/example_2_3.sce b/83/CH2/EX2.3/example_2_3.sce new file mode 100755 index 000000000..d3f3e39a3 --- /dev/null +++ b/83/CH2/EX2.3/example_2_3.sce @@ -0,0 +1,48 @@ +//Chapter 2 +//Example 2.3 +//page 58 +//To find inductance of each side of the line and that of the complete line +clear;clc; +//to find mutual GMD +D14=sqrt(8*8+2*2); +D15=sqrt(8*8+6*6); +D24=sqrt(8*8+2*2); +D25=sqrt(8*8+2*2); +D34=sqrt(8*8+6*6); +D35=sqrt(8*8+2*2); +//sixth root of six mutual distances +Dm=(D14*D15*D24*D25*D34*D35)^(1/6);//mutual GMD between lines + +//to find GMR of Side A conductors +D11=0.7788*2.5*10^(-3); +D22=D11; +D33=D11; +D12=4; +D21=D12; +D13=8; +D31=8; +D23=4; +D32=D23; +//ninth root nine distances in Side A +Da=(D11*D12*D13*D21*D22*D23*D31*D32*D33)^(1/9); + +//to find GMR of Side A conductors +D44=0.7788*5*10^(-3); +D45=4; +D54=D45; +D55=D44; +//fourth root of four distances in Side B +Db=(D44*D45*D54*D55)^(1/4); + +La=0.461*log10(Dm/Da);//inductance line A +Lb=0.461*log10(Dm/Db);//inductance line B + +L=La+Lb; //loop inductance + +printf("\n\nMutual GMD between lines = %0.4f m\n\n",Dm); +printf("GMR of Side A conductors = %0.4f m\n\n",Da); +printf("GMR of Side B conductors = %0.4f m\n\n",Db); +printf("Inductance of line A = %0.4f mH/km\n\n",La); +printf("Inductance of line B = %0.4f mH/km\n\n",Lb); +printf("Loop Inductance of the lines = %0.4f mH/km\n\n",L); + diff --git a/83/CH2/EX2.3/result_example_2_3.txt b/83/CH2/EX2.3/result_example_2_3.txt new file mode 100755 index 000000000..bec7c7d42 --- /dev/null +++ b/83/CH2/EX2.3/result_example_2_3.txt @@ -0,0 +1,12 @@ + +Mutual GMD between lines = 8.7937 m + +GMR of Side A conductors = 0.3670 m + +GMR of Side B conductors = 0.1248 m + +Inductance of line A = 0.6359 mH/km + +Inductance of line B = 0.8519 mH/km + +Loop Inductance of the lines = 1.4878 mH/km diff --git a/83/CH2/EX2.5/example_2_5.sce b/83/CH2/EX2.5/example_2_5.sce new file mode 100755 index 000000000..dc380bdf8 --- /dev/null +++ b/83/CH2/EX2.5/example_2_5.sce @@ -0,0 +1,34 @@ +//Chapter 2 +//Example 2.5 +//page 63 +//To find flux linkages with neutral and voltage induced in neutral +//To find voltage drop in each of three-phase wires + +clear;clc; +Ia=-30+%i*50; +Ib=-25+%i*55; +Ic=-(Ia+Ib); + +//(a) to find flux linkages with neutral and voltage induce in it +Dan=4.5; +Dbn=3; //from figure +Dcn=1.5; +Phi_n=2*10^(-7)*(Ia*log(1/Dan)+Ib*log(1/Dbn)+Ic*log(1/Dcn)); +Vn=%i*2*%pi*50*Phi_n*15000; //voltage induced for 15km long TL +Vn=abs(Vn) ; +printf("\nFlux linkages of the neutral wire = %f Wb-T/m\n\n",Phi_n); +printf("Voltage induced in the neutral = %d\n\n",Vn); + +//(b) to find voltage drop in each phase +Phi_a=2*10^(-7)*(Ia*log(1/(0.7788*0.005))+Ib*log(1/1.5)+Ic*log(1/3)); +Phi_b=2*10^(-7)*(Ib*log(1/(0.7788*0.005))+Ia*log(1/1.5)+Ic*log(1/1.5)); +Phi_c=2*10^(-7)*(Ic*log(1/(0.7788*0.005))+Ib*log(1/1.5)+Ia*log(1/3)); + +delta_Va=%i*2*%pi*50*Phi_a*15000; //like we did for neutral voltage +delta_Vb=%i*2*%pi*50*Phi_b*15000; +delta_Vc=%i*2*%pi*50*Phi_c*15000; + +printf("The Voltage drop of phase a(in volts) =");disp(delta_Va); +printf("\n\nThe Voltage drop of phase b(in volts) =");disp(delta_Vb); +printf("\n\nThe Voltage drop of phase c(in volts) =");disp(delta_Vc); + diff --git a/83/CH2/EX2.5/result_example_2_5.txt b/83/CH2/EX2.5/result_example_2_5.txt new file mode 100755 index 000000000..1b290864f --- /dev/null +++ b/83/CH2/EX2.5/result_example_2_5.txt @@ -0,0 +1,15 @@ + +Flux linkages of the neutral wire = 0.000010 Wb-T/m + +Voltage induced in the neutral = 99 + +The Voltage drop of phase a(in volts) = + - 349.1594 - 204.26943i + + +The Voltage drop of phase b(in volts) = + - 308.62198 - 140.28272i + + +The Voltage drop of phase c(in volts) = + 621.85121 + 328.22026i diff --git a/83/CH2/EX2.6/example_2_6.sce b/83/CH2/EX2.6/example_2_6.sce new file mode 100755 index 000000000..8ec5b5006 --- /dev/null +++ b/83/CH2/EX2.6/example_2_6.sce @@ -0,0 +1,13 @@ +//Chapter 2 +//Example 2.6 +//page 65 +//To find mutual inductance between power line and telephone line and voltage induced in telephone line + +clear;clc; +D1=sqrt(1.1*1.1+2*2); //from figure 2.14 +D2=sqrt(1.9*1.9+2*2); //from figure 2.14 +Mpt=0.921*log10(D2/D1); //mutual inductance +Vt=abs(%i*2*%pi*50*Mpt*10^(-3)*100);//when 100A is flowing in the power lines + +printf("\n\nMutual inductance between power line and telephone line = %f mH/km\n\n",Mpt); +printf("\n\nVoltage induced in the telephone circuit = %.3f V/km\n\n",Vt);
\ No newline at end of file diff --git a/83/CH2/EX2.6/result_example_2_6.txt b/83/CH2/EX2.6/result_example_2_6.txt new file mode 100755 index 000000000..cfce102d1 --- /dev/null +++ b/83/CH2/EX2.6/result_example_2_6.txt @@ -0,0 +1,8 @@ + + + +Mutual inductance between power line and telephone line = 0.075774 mH/km + + + +Voltage induced in the telephone circuit = 2.381 V/km diff --git a/83/CH2/EX2.7/example_2_7.sce b/83/CH2/EX2.7/example_2_7.sce new file mode 100755 index 000000000..7d7a737fe --- /dev/null +++ b/83/CH2/EX2.7/example_2_7.sce @@ -0,0 +1,43 @@ +//Chapter 2 +//Example 2.7 +//page 69 +//To find inductive reactance of for the three phase bundled conductors +clear;clc; +r=0.01725; //radius of each conductor +//from the figure we can declare the distances +d=7; +s=0.4; +//Mutual GMD between bundles of phases a and b +Dab=(d*(d+s)*(d-s)*d)^(1/4); +//Mutual GMD between bundles of phases b and c +Dbc=Dab ; //by symmetry +//Mutual GMD between bundles of phases c and a +Dca=(2*d*(2*d+s)*(2*d-s)*2*d)^(1/4); +//Equivalent GMD is calculated as +Deq=(Dab*Dbc*Dca)^(1/3); +//self GMD is given by +Ds=(0.7788*1.725*10^(-2)*0.4*0.7788*1.725*10^(-2)*0.4)^(1/4); +//Inductive reactance per phase is given by +Xl=2*%pi*50*10^(-3)*0.461*log10(Deq/Ds); //10^(-3) because per km is asked +printf("\n\nMutual GMD between bundles of phases a and b = %0.3fm\n\n",Dab); +printf("Mutual GMD between bundles of phases b and c = %0.3fm\n\n",Dbc); +printf("Mutual GMD between bundles of phases c and a = %0.3fm\n\n",Dca); +printf("Equivalent GMD = %0.3fm\n\n",Deq); +printf("Self GMD of the bundles = %0.3fm\n\n",Ds); +printf("Inductive reactance per phase = %0.3f ohms/km\n\n",Xl); + +//now let us compute reactance when center to centerr distances are used +Deq1=(d*d*2*d)^(1/3); +Xl1=2*%pi*50*0.461*10^(-3)*log10(Deq1/Ds); +printf("\n When radius of conductors are neglected and only distance between conductors are used, we get below results:\n\n"); +printf("Equivalent mean distance is = %f\n\n",Deq1); +printf("Inductive reactance per phase = %0.3f ohms/km\n\n",Xl1); + +//when bundle of conductors are replaced by an equivalent single conductor +cond_dia=sqrt(2)*1.725*10^(-3); //conductor diameter for same cross-sectional area +Xl2=2*%pi*50*0.461*10^(-3)*log10(Deq1/cond_dia); +printf("\nWhen bundle of conductors are replaced by an equivalent single conductor:\n\n"); +printf("Inductive reactance per phase = %0.3f ohms/km\n\n",Xl2) ; +percentage_increase=((Xl2-Xl1)/Xl1)*100; +printf("This is %0.2f higher than corresponding value for a bundled conductor line.",percentage_increase); + diff --git a/83/CH2/EX2.7/results_example_2_7.txt b/83/CH2/EX2.7/results_example_2_7.txt new file mode 100755 index 000000000..ab9b3234a --- /dev/null +++ b/83/CH2/EX2.7/results_example_2_7.txt @@ -0,0 +1,28 @@ + + + +Mutual GMD between bundles of phases a and b = 6.994m + +Mutual GMD between bundles of phases b and c = 6.994m + +Mutual GMD between bundles of phases c and a = 13.997m + +Equivalent GMD = 8.814m + +Self GMD of the bundles = 0.073m + +Inductive reactance per phase = 0.301 ohms/km + + + When radius of conductors are neglected and only distance between conductors are used, we get below results: + +Equivalent mean distance is = 8.819447 + +Inductive reactance per phase = 0.301 ohms/km + + +When bundle of conductors are replaced by an equivalent single conductor: + +Inductive reactance per phase = 0.515 ohms/km + +This is 71.04 higher than corresponding value for a bundled conductor line. |