diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /686/CH14/EX14.3 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '686/CH14/EX14.3')
-rwxr-xr-x | 686/CH14/EX14.3/Ex14_3.sci | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/686/CH14/EX14.3/Ex14_3.sci b/686/CH14/EX14.3/Ex14_3.sci new file mode 100755 index 000000000..416611e49 --- /dev/null +++ b/686/CH14/EX14.3/Ex14_3.sci @@ -0,0 +1,55 @@ +clc();
+clear;
+
+// To find the division of the heating surface
+ t1 = 2500; // temperature of contenets of the bottle in F
+ t2 = 600; // Ambient temperature in F
+ e1 = 0.048; // Interchange factor in 1800 F
+ e2 = 0.044; // Interchange factor in 600 F
+ e = 0.94; // Emmisivity of walls
+ p = 1; // Emperical factor
+ F = 2*0.88; // Shape factor
+ s = 0.173*10^-8; // Stephens boltzmanns constant
+
+ h = s*e*p*F*((t1+460)^4-(t2+460)^4)/(%pi*(t1-t2));
+ // Heat transfer coefficient
+
+
+ // Heat transfer for the tubes within the convective surface
+ // Radiation of CO2 and waterin the combustion gases
+ L = 0.5; // Eqivalent length of gas layer
+ Tg = 1800; // Gas temperature in F
+ Tw = 600; // Surface temperature of tubes in F
+
+ // From the table the emmisivity of carbon dioxide can be known
+ ec1 = 0.06; // Emmmisivity of CO2 at 1800F
+ ec2 = 0.055; // Emmisivity of Co2 at 600F
+ ew = 0.8; // Emmisivity of tube wall
+ qc = s*ew*p*(ec1*(Tg+460)^4-ec2*(t2+460)^4);
+ // Heat loss by carbon dioxide in Btu/hr
+
+// From the table the emmisivity of water can be known
+ eh1 = 0.0176; // Emmmisivity of water at 1800F
+ eh2 = 0.0481; // Emmisivity of water at 600F
+ qh = s*ew*p*(eh1*(Tg+460)^4-eh2*(t2+460)^4);
+ // Heat loss by water in Btu/hr
+
+ qg = qc + qh; // Heat heat flow by gas radiation
+ hg = qg/(Tg-t2); // Heat transfer coeffcoent by gas radiation
+ printf("The heat transfer coefficient by gas radiation is %.2f Btu/hr-ft^2 \n",hg);
+
+ // Heat transfer by convection can be found out using values iun the table
+ hc = 8.14; // Heat transfer by convection in Btu/hr-ft^2-F
+ printf(" The heat transfer coefficient by gas radiation is %.2f Btu/hr-ft^2\n",hc);
+
+ ht = hc + hg; // Total heat transfer coefficient for convective surface
+
+ printf("The covective surface have greater heat transfer coefficients than the radiating surface. Therefore it is advantageous to line the whole combustion chamber with narrowly spaced cooling tubes");
+
+
+
+
+
+
+
+
\ No newline at end of file |