diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /647/CH5 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '647/CH5')
25 files changed, 613 insertions, 0 deletions
diff --git a/647/CH5/EX5.1/Example5_1.sce b/647/CH5/EX5.1/Example5_1.sce new file mode 100755 index 000000000..4dffa7e93 --- /dev/null +++ b/647/CH5/EX5.1/Example5_1.sce @@ -0,0 +1,21 @@ +clear;
+clc;
+
+// Example: 5.1
+// Page: 150
+
+printf("Example: 5.1 - Page: 150\n\n");
+
+// Solution
+
+//*****Data*****//
+Th = 550 + 273;// [K]
+Tl = 27 + 273;// [K]
+//************//
+
+// The theoretical efficiency of a heat engine is given by:
+// eta = Net Work Output/Net Work Input
+// eta = Wnet/Qin
+// eta = (Qin - Qout)/Qin = (Th - Tl)/Th
+eta = (Th - Tl)/Th;
+printf("The theoretical efficiency of heat engine is %.1f %%",eta * 100)
\ No newline at end of file diff --git a/647/CH5/EX5.10/Example5_10.sce b/647/CH5/EX5.10/Example5_10.sce new file mode 100755 index 000000000..35e98bd87 --- /dev/null +++ b/647/CH5/EX5.10/Example5_10.sce @@ -0,0 +1,22 @@ +clear;
+clc;
+
+// Example: 5.10
+// Page: 164
+
+printf("Example: 5.10 - Page: 164\n\n");
+
+// Solution
+
+//*****Data*****//
+n = 5;// [moles]
+T1 = 300;// [K]
+T2 = 400;// [K]
+P1 = 3;// [bars]
+P2 = 12;// [bars]
+Cp = 26.73;// [J/mol K]
+R = 8.314;// [K/mol K]
+//*************//
+
+deltaS = n*((Cp*log(T2/T1)) + (R*log(P1/P2)));// [kJ/K]
+printf("Change in Entropy is %f kJ/K",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.11/Example5_11.sce b/647/CH5/EX5.11/Example5_11.sce new file mode 100755 index 000000000..9406ceceb --- /dev/null +++ b/647/CH5/EX5.11/Example5_11.sce @@ -0,0 +1,19 @@ +clear;
+clc;
+
+// Example: 5.11
+// Page: 166
+
+printf("Example: 5.11 - Page: 166\n\n");
+
+// Solution
+
+//*****Data*****//
+N = 1;// [kmol]
+xA = 0.21;// [for Oxygen]
+xB = 0.79;// [for Nitrogen]
+R = 8.314;// [kJ/kmol K]
+//*************//
+
+deltaS = - (N*R*(xA*log(xA) + xB*log(xB)));// [kJ/mol K]
+printf("Entropy Change is %.2f kJ/kmol K",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.12/Example5_12.sce b/647/CH5/EX5.12/Example5_12.sce new file mode 100755 index 000000000..7c49e3740 --- /dev/null +++ b/647/CH5/EX5.12/Example5_12.sce @@ -0,0 +1,22 @@ +clear;
+clc;
+
+// Example: 5.12
+// Page: 167
+
+printf("Example: 5.12 - Page: 167\n\n");
+
+// Solution
+
+//*****Data*****//
+Vol_O2 = 5.6;// [L]
+Vol_H2 = 16.8;// [L]
+R = 1.987;// [cal/mol K]
+//*************//
+
+xA = Vol_O2/22.4;// [mole fraction O2]
+xB = Vol_H2/22.4;// [mle fraaction H2]
+N = xA + xB;// [total number of moles]
+// From Eqn. 5.21:
+deltaS = - (N*R*(xA*log(xA) + xB*log(xB)));// [cal/K]
+printf("Change in Entropy is %.3f cal/K",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.13/Example5_13.sce b/647/CH5/EX5.13/Example5_13.sce new file mode 100755 index 000000000..e0241e0be --- /dev/null +++ b/647/CH5/EX5.13/Example5_13.sce @@ -0,0 +1,21 @@ +clear;
+clc;
+
+// Example: 5.13
+// Page: 168
+
+printf("Example: 5.13 - Page: 168\n\n");
+
+// Solution
+
+//*****Data*****//
+m = 80;// [mass of Argon, g]
+T1 = 300;// [K]
+T2 = 500;// [K]
+Cv = 0.3122;// [kJ/kg K]
+//**************//
+
+Mw = 40;// [Molecular Weight of Argon]
+n = m/Mw;// [moles]
+deltaS = n*Cv*log(T2/T1);// [kJ/K]
+printf("Entropy Change is %.3f kJ/K",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.14/Example5_14.sce b/647/CH5/EX5.14/Example5_14.sce new file mode 100755 index 000000000..4f58e1243 --- /dev/null +++ b/647/CH5/EX5.14/Example5_14.sce @@ -0,0 +1,21 @@ +clear;
+clc;
+
+// Example: 5.14
+// Page: 168
+
+printf("Example: 5.14 - Page: 168\n\n");
+
+// Solution
+
+//*****Data*****//
+deltaS = 1;// [kJ/kg K]
+Cv = 0.918;// [kJ/kg K]
+T1 = 273 + 18;// [K]
+//*************//
+
+// Let the upper temperature be T.
+// deltaS = integrate('Cv/T','T',T1,T);
+// deltaS = Cv*log(T/T1)
+T = T1*exp(deltaS/Cv);// [K]
+printf("The upper temperature of the process is %.3f K",T);
\ No newline at end of file diff --git a/647/CH5/EX5.15/Example5_15.sce b/647/CH5/EX5.15/Example5_15.sce new file mode 100755 index 000000000..b0666eaa2 --- /dev/null +++ b/647/CH5/EX5.15/Example5_15.sce @@ -0,0 +1,27 @@ +clear;
+clc;
+
+// Example: 5.15
+// Page: 169
+
+printf("Example: 5.15 - Page: 169\n\n");
+
+// Solution
+
+//*****Data*****//
+m1 = 5;// [kg]
+m2 = 20;// [kg]
+C = 4.2;// [kJ/kg K]
+T1 = 350;// [K]
+T2 = 250;// [K]
+//**************//
+
+// Suppose the final temperature is T
+deff('[y] = f(T)','y = m1*C*(T1 - T) - m2*C*(T - T2)');
+T = fsolve(7,f);// [K]
+// Change in entropy of Hot Water:
+deltaS1 = m1*C*integrate('(1/T)','T',T1,T);// [kJ/K]
+// Change in Entopy of Hot Water:
+deltaS2 = m2*C*integrate('(1/T)','T',T2,T);// [kJ/K]
+deltaS = deltaS1 + deltaS2;// [kJ/K]
+printf("Change in Entropy is %.3f kJ/K",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.16/Example5_16.sce b/647/CH5/EX5.16/Example5_16.sce new file mode 100755 index 000000000..1136b6157 --- /dev/null +++ b/647/CH5/EX5.16/Example5_16.sce @@ -0,0 +1,28 @@ +clear;
+clc;
+
+// Example: 5.16
+// Page: 169
+
+printf("Example: 5.16 - Page: 169\n\n");
+
+// Solution
+
+//*****Data*****//
+m = 12;// [g]
+T1 = 294;// [K]
+T2 = 574;// [K]
+T = 505;// [melting point, K]
+H_fusion = 4.5;// [cal/K]
+C_solid = 0.052;// [cal/g K]
+C_liquid = 0.062;// [cal/g K]
+//*************//
+
+// Entropy Change in heating 12 g of metal from T1 to T
+deltaS1 = m*C_solid*integrate('(1/T)','T',T1,T);// [kJ/K]
+// Entropy Change in fusion of metal:
+deltaS2 = m*H_fusion/T;// [kJ/K]
+// Entropy Change in heating liquid metal from 505 K to 574 K
+deltaS3 = m*C_liquid*integrate('(1/T)','T',T,T2);// [kJ/K]
+deltaS = deltaS1 + deltaS2 + deltaS3;// [kJ/K]
+printf("Change in Entropy is %.3f kJ/K",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.17/Example5_17.sce b/647/CH5/EX5.17/Example5_17.sce new file mode 100755 index 000000000..c22cdc243 --- /dev/null +++ b/647/CH5/EX5.17/Example5_17.sce @@ -0,0 +1,18 @@ +clear;
+clc;
+
+// Example: 5.17
+// Page: 170
+
+printf("Example: 5.17 - Page: 170\n\n");
+
+// Solution
+
+//*****Data*****//
+deff('[y] = Cp(T)','y = 7.25 + 2.28*10^(-3)*T');
+T1 = 273 + 137;// [K]
+T2 = 273 + 877;// [K]
+//************//
+
+deltaS = integrate('Cp(T)/T','T',T1,T2);// [cal/K]
+printf("Change in Entropy is %.3f cal/K",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.18/Example5_18.sce b/647/CH5/EX5.18/Example5_18.sce new file mode 100755 index 000000000..082f9d42f --- /dev/null +++ b/647/CH5/EX5.18/Example5_18.sce @@ -0,0 +1,27 @@ +clear;
+clc;
+
+// Example: 5.18
+// Page: 170
+
+printf("Example: 5.18 - Page: 170\n\n");
+
+// Solution
+
+//*****Data*****//
+m_iron = 40;// [kg]
+T1 = 625;// [K]
+m_water = 160;// [kg]
+T2 = 276;// [K]
+C_iron = 0.45;// [kJ/kg K]
+C_water = 4.185;// [kJ/kg K]
+//**************//
+
+deff('[y] = f(T)','y = m_iron*C_iron*(T1 - T) - m_water*C_water*(T - T2)');
+T = fsolve(7,f);// [K]
+// Change in Entropy of the iron casting can be estimated as:
+deltaS1 = m_iron*C_iron*log(T/T1);// [kJ/K]
+// Change in Entropy of Water is given by:
+deltaS2 = m_water*C_water*log(T/T2);// [kJ/K]
+deltaS = deltaS1 + deltaS2;// [kJ/K]
+printf("Total Entropy Change is %.2f kJ/K",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.19/Example5_19.sce b/647/CH5/EX5.19/Example5_19.sce new file mode 100755 index 000000000..4dec7015d --- /dev/null +++ b/647/CH5/EX5.19/Example5_19.sce @@ -0,0 +1,21 @@ +clear;
+clc;
+
+// Example: 5.19
+// Page: 172
+
+printf("Example: 5.19 - Page: 172\n\n");
+
+// Solution
+
+//*****Data*****//
+Cp = 21;// [J/kmol]
+T1 = 300;// [K]
+T2 = 500;// [K]
+S1 = 150;// [Entropy at T1, J/kmol]
+//*************//
+
+// This is a constant Entropy process. Therefore:
+deltaS = Cp*log(T2/T1);// [J/kmol]
+S2 = S1 + deltaS;// [J/kmol]
+printf("Entropy at 500 K is %.2f J/kmol",S2);
\ No newline at end of file diff --git a/647/CH5/EX5.2/Example5_2.sce b/647/CH5/EX5.2/Example5_2.sce new file mode 100755 index 000000000..71efe00d9 --- /dev/null +++ b/647/CH5/EX5.2/Example5_2.sce @@ -0,0 +1,30 @@ +clear;
+clc;
+
+// Example: 5.2
+// Page: 150
+
+printf("Example: 5.2 - Page: 150\n\n");
+
+// Solution
+
+//*****Data*****//
+Th = 810;// [K]
+Tl = 300;// [K]
+//*************//
+
+// Solution (a)
+eta = (Th - Tl)/Th;
+printf("(a) The efficiency of the heat engine is %.1f %%\n",eta*100);
+
+// Solution (b)
+Th = 1366;// [K]
+Tl = 300;// [K]
+eta = (Th - Tl)/Th;
+printf("(b) The efficiency of the heat engine is %.1f %%\n",eta*100);
+
+// Solution (c)
+Th = 810;// [K]
+Tl = 344;// [K]
+eta = (Th - Tl)/Th;
+printf("(c) The efficiency of the heat engine is %.1f %%\n",eta*100);
\ No newline at end of file diff --git a/647/CH5/EX5.20/Example5_20.sce b/647/CH5/EX5.20/Example5_20.sce new file mode 100755 index 000000000..d14cf496d --- /dev/null +++ b/647/CH5/EX5.20/Example5_20.sce @@ -0,0 +1,32 @@ +clear;
+clc;
+
+// Example: 5.20
+// Page: 173
+
+printf("Example: 5.20 - Page: 173\n\n");
+
+// Solution
+
+//*****Data*****//
+T1_oil = 273 + 150;// [K]
+T2_oil = 50 +273;// [K]
+m_water = 4000;// [kg]
+T1_water = 273 + 20;// [K]
+T2_water = 273 + 130;// [K]
+C_water = 4.185;// [kJ/kg K]
+C_oil = 2.5;// [kJ/kg K]
+//***************//
+
+// For oil:
+deltaT_oil = T1_oil - T2_oil;// [K]
+// For water:
+deltaT_water = T2_water - T1_water;// [K]
+// The mass flow rate of oil can be measured by the enthalpy balance over the process:
+m_oil = m_water*C_water*deltaT_water/(deltaT_oil*C_oil);// [kg]
+// Change in the Entropy of oil:
+deltaS_oil = m_oil*C_oil*log(T2_oil/T1_oil);// [kJ/K]
+// Change in Entropy of water:
+deltaS_water = m_water*C_water*log(T2_water/T1_water);// [kJ/K]
+deltaS = deltaS_oil + deltaS_water;// [kJ/K]
+printf("Total Entropy Change is %.2f kJ/K",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.21/Example5_21.sce b/647/CH5/EX5.21/Example5_21.sce new file mode 100755 index 000000000..0a2993e2f --- /dev/null +++ b/647/CH5/EX5.21/Example5_21.sce @@ -0,0 +1,19 @@ +clear;
+clc;
+
+// Example: 5.21
+// Page: 174
+
+printf("Example: 5.21 - Page: 174\n\n");
+
+// Solution
+
+//*****Data*****//
+t = 20*60;// [s]
+P = 650;// [W]
+T = 273 + 250;// [K]
+//*************//
+
+Q = P*t/1000;// [kJ]
+deltaS = Q/T;// [kJ/K]
+printf("Change in Entropy is %.2f kJ/K",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.22/Example5_22.sce b/647/CH5/EX5.22/Example5_22.sce new file mode 100755 index 000000000..87d682b7e --- /dev/null +++ b/647/CH5/EX5.22/Example5_22.sce @@ -0,0 +1,33 @@ +clear;
+clc;
+
+// Example: 5.22
+// Page: 174
+
+printf("Example: 5.22 - Page: 174\n\n");
+
+// Solution
+
+//*****Data*****//
+T1 = 400;// [K]
+P1 = 300;// [kPa]
+V1 = 1;// [cubic m]
+V2 =2;// [cubic m]
+R = 8.314;// [kJ/kmol K]
+//**************//
+
+// Since the system is well insulated, there is no scope of transferring heat between system & surrounding.
+deltaQ = 0;// [kJ]
+deltaW = 0;// [kJ]
+// By first law of thermodynamics:
+deltaU =deltaQ - deltaW;// [kJ]
+// As the internal energy of the gas depends only on temperature,
+deltaT = 0;// [K]
+T2 = T1 + deltaT;// [K]
+P2 = (P1*V1/T1)*(T2/V2);// [kPa]
+n = P1*V1/(R*T1);// [kmol]
+deltaS_system = n*R*log(P1/P2);// [kJ/K]
+// Since process is adiabatic:
+deltaS_surrounding = 0;// [kJ/K]
+deltaS = deltaS_system + deltaS_surrounding;// [kJ/K]
+printf("Change in Entropy of the gas is %.4f kJ/K",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.23/Example5_23.sce b/647/CH5/EX5.23/Example5_23.sce new file mode 100755 index 000000000..896937c19 --- /dev/null +++ b/647/CH5/EX5.23/Example5_23.sce @@ -0,0 +1,13 @@ +clear;
+clc;
+
+// Example: 5.23
+// Page: 174
+
+printf("Example: 5.23 - Page: 174\n\n");
+
+// This problem involves proving a relation in which no mathematics and no calculations are involved.
+// For prove refer to this example 5.23 on page number 174 of the book.
+
+printf(" This problem involves proving a relation in which no mathematics and no calculations are involved.\n\n");
+printf(" For prove refer to this example 5.23 on page 174 of the book.")
\ No newline at end of file diff --git a/647/CH5/EX5.24/Example5_24.sce b/647/CH5/EX5.24/Example5_24.sce new file mode 100755 index 000000000..6aa5621b8 --- /dev/null +++ b/647/CH5/EX5.24/Example5_24.sce @@ -0,0 +1,30 @@ +clear;
+clc;
+
+// Example: 5.24
+// Page: 182
+
+printf("Example: 5.24 - Page: 182\n\n");
+
+// Solution
+
+// From Example 5.18 (Pg: 170)
+//*****Data*****//
+m_iron = 40;// [kg]
+T1 = 625;// [K]
+m_water = 160;// [kg]
+T2 = 276;// [K]
+C_iron = 0.45;// [kJ/kg K]
+C_water = 4.185;// [kJ/kg K]
+//**************//
+
+deff('[y] = f(T)','y = m_iron*C_iron*(T1 - T) - m_water*C_water*(T - T2)');
+T = fsolve(7,f);// [K]
+// Change in Entropy of the iron casting can be estimated as:
+deltaS1 = m_iron*C_iron*integrate('(1/T)','T',T1,T);// [kJ/K]
+// Change in Entropy of Water is given by:
+deltaS2 = m_water*C_water*integrate('(1/T)','T',T2,T);// [kJ/K]
+deltaS = deltaS1 + deltaS2;// [kJ/K]
+// By Eqn. 5.63:
+W_lost = T2 * deltaS;// [kJ]
+printf("Work lost is %.2f kJ",W_lost);
\ No newline at end of file diff --git a/647/CH5/EX5.25/Example5_25.sce b/647/CH5/EX5.25/Example5_25.sce new file mode 100755 index 000000000..9761340b8 --- /dev/null +++ b/647/CH5/EX5.25/Example5_25.sce @@ -0,0 +1,34 @@ +clear;
+clc;
+
+// Example: 5.24
+// Page: 182
+
+printf("Example: 5.24 - Page: 182\n\n");
+
+// Solution
+
+// *****Data******//
+m_oil = 4750;// [kg]
+T1_oil = 515;// [K]
+T2_oil = 315;// [K]
+m_water = 9500;// [kg]
+T1_water = 290;// [K]
+Cp_oil = 3.2;// [kJ/kg K]
+Cp_water = 4.185;// [kJ/kg K]
+//*****************//
+
+// From enthalpy Balance:
+deff('[y] = f(T2_water)','y = m_oil*Cp_oil*(T1_oil - T2_oil) - m_water*Cp_water*(T2_water - T1_water)');
+T2_water = fsolve(7,f);// [K]
+// Change in the Entropy of oil:
+deltaS_oil = m_oil*Cp_oil*integrate('(1/T)','T',T1_oil,T2_oil);// [kJ/K]
+// Change in Entropy of water:
+deltaS_water = m_water*Cp_water*integrate('(1/T)','T',T1_water,T2_water);// [kJ/K]
+deltaS = deltaS_oil + deltaS_water;// [kJ/K]
+printf("Total Entropy Change is %.2f kJ/K\n",deltaS);
+if deltaS > 0
+ printf("Since deltaS is a positive quantity, process is irreversible\n");
+else
+ printf("Since deltaS is a negative quantity, process is reversible\n");
+end
\ No newline at end of file diff --git a/647/CH5/EX5.3/Example5_3.sce b/647/CH5/EX5.3/Example5_3.sce new file mode 100755 index 000000000..4cfc0d395 --- /dev/null +++ b/647/CH5/EX5.3/Example5_3.sce @@ -0,0 +1,25 @@ +clear;
+clc;
+
+// Example: 5.3
+// Page: 151
+
+printf("Example: 5.3 - Page: 151\n\n");
+
+// Solution
+
+//*****Data*****//
+Th = 650 + 273;// [K]
+Tl = 30 + 273;// [K]
+Qh = 585;// [kJ/cycle]
+//*************//
+
+// Solution (a)
+// From Eqn. (5.9)
+eta = (Th - Tl)/Th;
+printf("(a) The efficiency of the Carnot engine is %.1f %%\n",eta*100);
+
+// Soluton (b)
+// From the knowledge of the ratio of heat and temperature between the two regions:
+Ql = Qh*Tl/Th;// [kJ]
+printf("(b) Heat released to cold reservoir is %d kJ\n",Ql);
\ No newline at end of file diff --git a/647/CH5/EX5.4/Example5_4.sce b/647/CH5/EX5.4/Example5_4.sce new file mode 100755 index 000000000..bf7a9c7e5 --- /dev/null +++ b/647/CH5/EX5.4/Example5_4.sce @@ -0,0 +1,28 @@ +clear;
+clc;
+
+// Example: 5.4
+// Page: 151
+
+printf("Example: 5.4 - Page: 151\n\n");
+
+// Solution
+
+//*****Data*****//
+m = 1;// [kg]
+Tl = 273;// [K]
+Th = 295;// [K]
+Ql = 335;// [kJ/kg]
+//*************//
+
+// Solution (a)
+// The coeffecient of performance of refrigerating machine is:
+// COP = Ql/Wnet = Tl/(Th - Tl)
+Wnet = Ql*(Th - Tl)/Tl;// [kJ]
+printf("Minimum Work requirement is %d kJ\n",round(Wnet));
+
+// Solution (b)
+// Amount of heat released:
+// Wnet = Qh - Ql
+Qh = Wnet + Ql;// [kJ]
+printf("Amount of heat released to the surrounding is %d kJ\n",round(Qh));
\ No newline at end of file diff --git a/647/CH5/EX5.5/Example5_5.sce b/647/CH5/EX5.5/Example5_5.sce new file mode 100755 index 000000000..c77f43fcc --- /dev/null +++ b/647/CH5/EX5.5/Example5_5.sce @@ -0,0 +1,35 @@ +clear;
+clc;
+
+// Example: 5.5
+// Page: 152
+
+printf("Example: 5.5 - Page: 152\n\n");
+
+// Solution
+
+//*****Data*****//
+Th = 373;// [K]
+Tl = 275;// [K]
+Qh = 50;// [kJ]
+//*************//
+
+// Solution (a)
+// Theral Efficiency of the engine can be given as:
+// eta_HE = Wnet/Qh;
+// Wnet = Qh*COP = Qh*(Th - Tl)/Th;
+Wnet = Qh*(Th - Tl)/Th;// [kJ]
+printf("Minimum Work Required is %.1f kJ\n",Wnet);
+
+// Solution (b)
+eta = (Th - Tl)/Th;
+printf("The efficiency of Heat Engine is %.3f\n",eta);
+
+// Solution (c)
+// Amount of heat released can be calculated as:
+// eta = Net Work Output/Net Work Input;
+// eta = Wnet/Qin;
+// eta = (Qin - Qout)/Qin;
+Qin = Qh;// [kJ]
+Qout = Qin*(1 - eta);
+printf("Amount of Heat released is %.1f kJ\n",Qout);
\ No newline at end of file diff --git a/647/CH5/EX5.6/Example5_6.sce b/647/CH5/EX5.6/Example5_6.sce new file mode 100755 index 000000000..566db3e35 --- /dev/null +++ b/647/CH5/EX5.6/Example5_6.sce @@ -0,0 +1,26 @@ +clear;
+clc;
+
+// Example: 5.6
+// Page: 153
+
+printf("Example: 5.6 - Page: 153\n\n");
+
+// Solution
+
+//*****Data*****//
+W = 5;// [hp]
+Q = 7000;// [J/s]
+Th = 400 + 273;// [K]
+Tl = 24 + 273;// [K]
+//*************//
+
+W = 5*745.7;// [W]
+thermal_eta = W/Q;
+theoretical_eta = (Th - Tl)/Th;
+
+if theoretical_eta <= thermal_eta
+ printf("Claim is Valid");
+else
+ printf("Claim is not Valid");
+end
\ No newline at end of file diff --git a/647/CH5/EX5.7/Example5_7.sce b/647/CH5/EX5.7/Example5_7.sce new file mode 100755 index 000000000..c2f4e27d1 --- /dev/null +++ b/647/CH5/EX5.7/Example5_7.sce @@ -0,0 +1,20 @@ +clear;
+clc;
+
+// Example: 5.7
+// Page: 162
+
+printf("Example: 5.7 - Page: 162\n\n");
+
+// Solution
+
+//*****Data*****//
+n = 1;// [mol]
+deltaH_fusion = 6500;// [J/mol]
+T_Tr = 273;// [transition temperature, K]
+P = 1;// [atm]
+//************//
+
+// By Eqn. (9.40)
+deltaS_fusion = deltaH_fusion/T_Tr;// [J/mol K]
+printf("Change in Entropy is %.2f J/mol K",deltaS_fusion);
\ No newline at end of file diff --git a/647/CH5/EX5.8/Example5_8.sce b/647/CH5/EX5.8/Example5_8.sce new file mode 100755 index 000000000..cb3908c4f --- /dev/null +++ b/647/CH5/EX5.8/Example5_8.sce @@ -0,0 +1,21 @@ +clear;
+clc;
+
+// Example: 5.8
+// Page: 164
+
+printf("Example: 5.8 - Page: 164\n\n");
+
+// Solution
+
+//*****Data*****//
+V1 = 5;// [L]
+V2 = 50;// [L]
+n = 5;// [moles]
+R = 1.987;// [cal/mol K]
+//**************//
+
+// Change in entropy for an isothermal change for an ideal gas:
+// deltaS = n*R*log(P1/P2) = n*R*log(V2/V1)
+deltaS = n*R*log(V2/V1);// [cal/degree]
+printf("Change in Entropy is %.3f eu",deltaS);
\ No newline at end of file diff --git a/647/CH5/EX5.9/Example5_9.sce b/647/CH5/EX5.9/Example5_9.sce new file mode 100755 index 000000000..fb65ac17a --- /dev/null +++ b/647/CH5/EX5.9/Example5_9.sce @@ -0,0 +1,20 @@ +clear;
+clc;
+
+// Example: 5.9
+// Page: 164
+
+printf("Example: 5.9 - Page: 164\n\n");
+
+// Solution
+
+//*****Data*****//
+n = 8;// [mol]
+R = 8.314;// [J/mol K]
+T2 = 700;// [K]
+T1 = 350;// [K]
+Cp = (5/2)*R;// [J/mol K]
+//*************//
+
+deltaS = n*Cp*log(T2/T1);// [J/K]
+printf("deltaS is %.2f J/K",deltaS);
\ No newline at end of file |