summaryrefslogtreecommitdiff
path: root/629/CH14
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /629/CH14
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '629/CH14')
-rw-r--r--629/CH14/EX14.10/ex14_10.txt7
-rw-r--r--629/CH14/EX14.10/example14_10.sce33
-rw-r--r--629/CH14/EX14.11/ex14_11.txt3
-rw-r--r--629/CH14/EX14.11/example14_11.sce13
-rw-r--r--629/CH14/EX14.12/ex14_12.txt3
-rw-r--r--629/CH14/EX14.12/example14_12.sce9
-rw-r--r--629/CH14/EX14.2/ex14_2.txt5
-rw-r--r--629/CH14/EX14.2/example14_2.sce18
-rw-r--r--629/CH14/EX14.3/ex14_3.txt5
-rw-r--r--629/CH14/EX14.3/example14_3.sce19
-rw-r--r--629/CH14/EX14.4/ex14_4.txt5
-rw-r--r--629/CH14/EX14.4/example14_4.sce13
-rw-r--r--629/CH14/EX14.5/ex14_5.txt6
-rw-r--r--629/CH14/EX14.5/example14_5.sce15
-rw-r--r--629/CH14/EX14.6/ex14_6.txt2
-rw-r--r--629/CH14/EX14.6/example14_6.sce11
-rw-r--r--629/CH14/EX14.7/ex14_7.txt5
-rw-r--r--629/CH14/EX14.7/example14_7.sce35
-rw-r--r--629/CH14/EX14.8/ex14_8.txt3
-rw-r--r--629/CH14/EX14.8/example14_8.sce9
-rw-r--r--629/CH14/EX14.9/ex14_9.txt3
-rw-r--r--629/CH14/EX14.9/example14_9.sce13
22 files changed, 235 insertions, 0 deletions
diff --git a/629/CH14/EX14.10/ex14_10.txt b/629/CH14/EX14.10/ex14_10.txt
new file mode 100644
index 000000000..2140c89a6
--- /dev/null
+++ b/629/CH14/EX14.10/ex14_10.txt
@@ -0,0 +1,7 @@
+
+The power developed by the turbine = 14236 kW.
+
+Angular speed of wheel for maximum efficiency = 349 rpm.
+
+The torque on the turbine shaft = 390 kN.m
+ \ No newline at end of file
diff --git a/629/CH14/EX14.10/example14_10.sce b/629/CH14/EX14.10/example14_10.sce
new file mode 100644
index 000000000..448ee4aee
--- /dev/null
+++ b/629/CH14/EX14.10/example14_10.sce
@@ -0,0 +1,33 @@
+clear
+clc
+//Example 14.10 IMPULSE TURBINE
+z1=1670; //[m]
+z2=1000; //[m]
+g=9.81; //[m/s^2]
+L=6000; //length[m]
+f=0.015;
+Dj=0.18; //diameter [m]
+Aj=%pi*Dj^2/4 //area[m^2]
+Dp=1; //diameter of penstock[m]
+Ap=%pi*Dp^2/4 //area[m^2
+//Energy equation, (p1/gamma)+(V1^2/2g)+z1=(p2/gamma)+(Vj^2/2g)+z2+hL
+//p1=0,p2=0 ,Vp=Vj*(Aj/Ap), hL=f*L*Vp^2/(D*2*g)
+Vj=sqrt(2*g*(z1-z2)/(1+f*L*(Aj/Ap)^2/Dp)) //jet velocity[m/s]
+Gamma=9810;
+Q=Aj*Vj //[m^3/s])
+P=Q*Gamma*Vj^2/(2*g*10^3) //gross power[kW]
+eta=0.85; //efficiency
+Pd=P*eta //power developed [kW]
+printf("\nThe power developed by the turbine = %.f kW.\n",Pd)
+
+//Angular speed of wheel
+r=1.5; //radius[m]
+Vb=Vj/2 //[m/s]
+w=Vb/r //[rad/s]
+//Wheel speed
+N=w*60/(2*%pi) //in rpm
+printf("\nAngular speed of wheel for maximum efficiency = %.f rpm.\n",N)
+
+//Torque
+T=Pd/w //[kN.m]
+printf("\nThe torque on the turbine shaft = %.f kN.m\n",T) \ No newline at end of file
diff --git a/629/CH14/EX14.11/ex14_11.txt b/629/CH14/EX14.11/ex14_11.txt
new file mode 100644
index 000000000..04c62f864
--- /dev/null
+++ b/629/CH14/EX14.11/ex14_11.txt
@@ -0,0 +1,3 @@
+
+The guide vane angle for non seperating flow condition at runner entrance = 17.4°.
+ \ No newline at end of file
diff --git a/629/CH14/EX14.11/example14_11.sce b/629/CH14/EX14.11/example14_11.sce
new file mode 100644
index 000000000..e2b714b4a
--- /dev/null
+++ b/629/CH14/EX14.11/example14_11.sce
@@ -0,0 +1,13 @@
+clear
+clc
+//Example 14.11 FRANCIS TURBINE
+r1=0.6; //[m]
+beta1=110; //degrees
+w=600*(2*%pi)/60 //angular speed[rad/s]
+Q=4; //discharge[m^3/s]
+B=0.1; //blade height[m]
+//Radial velocity at inlet
+Vr1=Q/(2*%pi*r1*B) //[m/s]
+//Inlet guide vane angle
+alpha1=acotd((r1*w/Vr1)+cotd(beta1))
+printf("\nThe guide vane angle for non seperating flow condition at runner entrance = %.1f°.\n",alpha1) \ No newline at end of file
diff --git a/629/CH14/EX14.12/ex14_12.txt b/629/CH14/EX14.12/ex14_12.txt
new file mode 100644
index 000000000..63fc78f65
--- /dev/null
+++ b/629/CH14/EX14.12/ex14_12.txt
@@ -0,0 +1,3 @@
+
+The minimum capture area of wind turbine = 8.20 m^2.
+ \ No newline at end of file
diff --git a/629/CH14/EX14.12/example14_12.sce b/629/CH14/EX14.12/example14_12.sce
new file mode 100644
index 000000000..fd42e36fc
--- /dev/null
+++ b/629/CH14/EX14.12/example14_12.sce
@@ -0,0 +1,9 @@
+clear
+clc
+//Example 14.12 CAPTURE AREA OF WIND TURBINE
+Pmax=5*100; //power produced by turbine[W]
+V=20*(1000/3600) //wind velocity [m/s]
+rho=1.2; //density [Kg/m^3]
+//Minimum capture area
+Amin=Pmax*(54/16)/(rho*V^3) //[m^2]
+printf("\nThe minimum capture area of wind turbine = %.2f m^2.\n",Amin) \ No newline at end of file
diff --git a/629/CH14/EX14.2/ex14_2.txt b/629/CH14/EX14.2/ex14_2.txt
new file mode 100644
index 000000000..8fc466b9d
--- /dev/null
+++ b/629/CH14/EX14.2/ex14_2.txt
@@ -0,0 +1,5 @@
+
+The discharge of water, Q = 0.180 m^3/s.
+
+The power required for these conditions, P = 4.12 kW.
+ \ No newline at end of file
diff --git a/629/CH14/EX14.2/example14_2.sce b/629/CH14/EX14.2/example14_2.sce
new file mode 100644
index 000000000..afe0f131a
--- /dev/null
+++ b/629/CH14/EX14.2/example14_2.sce
@@ -0,0 +1,18 @@
+clear
+clc
+//Example 14.2 DISCHARGE AND POWER FOR AXIAL-FLOW PUMP
+g=9.81; //[m/s^2]
+D=0.356; //[m]
+n=600/60 //speed[rps]
+rho=10^3; //density[Kg/m^3]
+H=2; //[m]
+CH=H/(D*n*g)
+//From fig.14.6
+CQ=0.4;
+CP=0.72;
+//Discharge
+Q=CQ*n*D^3 //[m^3/s]
+printf("\nThe discharge of water, Q = %.3f m^3/s.\n",Q)
+//Power
+P=CP*rho*D^5*n^3/10^3 //[kW]
+printf("\nThe power required for these conditions, P = %.2f kW.\n",P) \ No newline at end of file
diff --git a/629/CH14/EX14.3/ex14_3.txt b/629/CH14/EX14.3/ex14_3.txt
new file mode 100644
index 000000000..72ba6c79a
--- /dev/null
+++ b/629/CH14/EX14.3/ex14_3.txt
@@ -0,0 +1,5 @@
+
+The head developed is H = 2.76 m.
+
+The power required for the operation = 4.57 kW.
+ \ No newline at end of file
diff --git a/629/CH14/EX14.3/example14_3.sce b/629/CH14/EX14.3/example14_3.sce
new file mode 100644
index 000000000..52fea8cf6
--- /dev/null
+++ b/629/CH14/EX14.3/example14_3.sce
@@ -0,0 +1,19 @@
+clear
+clc
+//Example 14.3 HEAD AND POWER FOR AXIAL FLOW PUMP
+g=9.81; //[m/s^2]
+Q=0.127; //[m^3/s]
+n=13.3; //[rps]
+D=0.3; //[m]
+rho=10^3; //density[Kg/m^3]
+//Discharge coefficient
+CQ=Q/(n*D^3)
+//From fig.14.6
+CH=1.7;
+CP=0.8;
+//Head produced
+H=CH*D^2*n^2/g //[m]
+printf("\nThe head developed is H = %.2f m.\n",H)
+//Power produced
+P=CP*rho*D^5*n^3/10^3 //[kW]
+printf("\nThe power required for the operation = %.2f kW.\n",P) \ No newline at end of file
diff --git a/629/CH14/EX14.4/ex14_4.txt b/629/CH14/EX14.4/ex14_4.txt
new file mode 100644
index 000000000..dd9109e21
--- /dev/null
+++ b/629/CH14/EX14.4/ex14_4.txt
@@ -0,0 +1,5 @@
+
+The speed at which the pump should be operated = 1961 rpm.
+
+The discharge for the given conditions = 0.234 m^3/s.
+ \ No newline at end of file
diff --git a/629/CH14/EX14.4/example14_4.sce b/629/CH14/EX14.4/example14_4.sce
new file mode 100644
index 000000000..aa5223e69
--- /dev/null
+++ b/629/CH14/EX14.4/example14_4.sce
@@ -0,0 +1,13 @@
+clear
+clc
+//Example 14.4 SPEED AND DISCHARGE OF CENTRIFUGAL PUMP
+N1=2133.5; //speed[rpm]
+H1=90; //[m]
+H2=76; //[m]
+//(g.H/n.D^2)_N1=(g.H/n.D^2)_N2
+N2=N1*(H2/H1)^(1/2) //[rpm]
+printf("\nThe speed at which the pump should be operated = %.f rpm.\n",N2)
+//(Q/n.D^3)_N1=(Q/n.D^3)_N2
+Q1=0.255; //discharge[m^3/s]
+Q2=Q1*N2/N1 //[m^3/s]
+printf("\nThe discharge for the given conditions = %.3f m^3/s.\n",Q2) \ No newline at end of file
diff --git a/629/CH14/EX14.5/ex14_5.txt b/629/CH14/EX14.5/ex14_5.txt
new file mode 100644
index 000000000..4ea85768d
--- /dev/null
+++ b/629/CH14/EX14.5/ex14_5.txt
@@ -0,0 +1,6 @@
+
+ At maximum efficiency, the expected values of
+ Head = 92.4 m
+ Discharge = 6.21 m^3/s
+ Power = 6222 kW
+ \ No newline at end of file
diff --git a/629/CH14/EX14.5/example14_5.sce b/629/CH14/EX14.5/example14_5.sce
new file mode 100644
index 000000000..3f27a3e4e
--- /dev/null
+++ b/629/CH14/EX14.5/example14_5.sce
@@ -0,0 +1,15 @@
+clear
+clc
+//Example 14.5 HEAD, DISCHARGE, AND POWER OF CENTRIFUGAL PUMP
+g=9.81; //[ft/s^2]
+n=400/60 //speed[rps]
+D=1.98//diameter[m]
+//From fig.14.10
+CQ=0.12;
+CH=5.2;
+CP=0.69;
+H=CH*D^2*n^2/g //head[ft]
+Q=CQ*n*D^3 //discharge[m^3/s]
+rho=10^3; //density[Kg/m^3]
+P=CP*rho*D^5*n^3/10^3 //power[kW]
+printf("\n At maximum efficiency, the expected values of\n Head = %.1f m\n Discharge = %.2f m^3/s\n Power = %.f kW\n",H,Q,P) \ No newline at end of file
diff --git a/629/CH14/EX14.6/ex14_6.txt b/629/CH14/EX14.6/ex14_6.txt
new file mode 100644
index 000000000..f07f37894
--- /dev/null
+++ b/629/CH14/EX14.6/ex14_6.txt
@@ -0,0 +1,2 @@
+
+For specific speed, ns= 0.035, radial flow pump is best choice. \ No newline at end of file
diff --git a/629/CH14/EX14.6/example14_6.sce b/629/CH14/EX14.6/example14_6.sce
new file mode 100644
index 000000000..95b44ff58
--- /dev/null
+++ b/629/CH14/EX14.6/example14_6.sce
@@ -0,0 +1,11 @@
+clear
+clc
+//Example 14.6 PUMP SELECTION USING SPECIFIC SPEED
+g=32.2; //[ft/s^2]
+n=1100/60; //in rps
+h=600; //[ft]
+Q=10; //[cfs]
+//Specific speed
+ns=n*Q^(1/2)/(g*h)^(3/4)
+//From fig 14.12,
+printf("\nFor specific speed, ns= %.3f, radial flow pump is best choice.\n",ns) \ No newline at end of file
diff --git a/629/CH14/EX14.7/ex14_7.txt b/629/CH14/EX14.7/ex14_7.txt
new file mode 100644
index 000000000..064e963a7
--- /dev/null
+++ b/629/CH14/EX14.7/ex14_7.txt
@@ -0,0 +1,5 @@
+
+The net positive suction head = 26.1 ft.
+
+The traditional suction specific speed, Nss = 4538.
+ \ No newline at end of file
diff --git a/629/CH14/EX14.7/example14_7.sce b/629/CH14/EX14.7/example14_7.sce
new file mode 100644
index 000000000..566e74ba5
--- /dev/null
+++ b/629/CH14/EX14.7/example14_7.sce
@@ -0,0 +1,35 @@
+clear
+clc
+//Example 14.7 NET POSITIVE SUCTION HEAD
+//To find Approx Value
+function [A]= approx (V,n)
+ A= round(V*10^n)/10^n; //V-Value, n-to what place
+ funcprot (0)
+endfunction
+g=32.2;//[ft/s^2]
+Gamma=62.2; //[lbf/ft^3]
+d=8/12; //diameter[ft]
+A=%pi*d^2/4 //area[ft^2]
+Q=2; //discharge[cfs]
+V2=approx(Q/A,2) //[ft/s]
+p1=14.7; //[lbf/in^2]
+//Pressure head at reservoir,hr
+hr=approx(p1*144/Gamma,0) //[ft]
+//Energy equation, (p1/gamma)+(V1^2/2g)+z1=(p2/gamma)+(V2^2/2g)+z2+hL
+//V1=0,z1=0
+z2=6; //[m]
+Ce=0.1; //entrance loss coefficient
+Cb=0.2; //bend loss coefficient
+hL=(Ce+Cb)*V2^2/(2*g)
+//Head at pump entrance, he=p2/Gamma
+he=approx(hr-z2-V2^2/(2*g)-hL,1) //[ft]
+pvap=0.506; //vapor pressure[psi]
+hp=pvap*144/Gamma //[ft]
+//Net positive suction head
+NPSH=he-hp //[ft]
+printf("\nThe net positive suction head = %.1f ft.\n",NPSH)
+//Traditional suction specific speed
+N=1750; //in rpm
+//1cfs=449 gpm
+Nss=N*(Q*449)^(1/2)/NPSH^(3/4)
+printf("\nThe traditional suction specific speed, Nss = %.f.\n",Nss) \ No newline at end of file
diff --git a/629/CH14/EX14.8/ex14_8.txt b/629/CH14/EX14.8/ex14_8.txt
new file mode 100644
index 000000000..9ab622b6c
--- /dev/null
+++ b/629/CH14/EX14.8/ex14_8.txt
@@ -0,0 +1,3 @@
+
+The efficiency of an impeller of diameter 1.80 m = 0.89.
+ \ No newline at end of file
diff --git a/629/CH14/EX14.8/example14_8.sce b/629/CH14/EX14.8/example14_8.sce
new file mode 100644
index 000000000..d1b95e410
--- /dev/null
+++ b/629/CH14/EX14.8/example14_8.sce
@@ -0,0 +1,9 @@
+clear
+clc
+//Example 14.8 VISCOUS EFFECTS ON PUMP EFFICIENCY
+D1=0.45; //diameter[m]
+D=1.8; //[m]
+eta1=0.85;
+//Efficiency
+eta=1-(1-eta1)/(D/D1)^(1/5)
+printf("\nThe efficiency of an impeller of diameter 1.80 m = %.2f.\n",eta) \ No newline at end of file
diff --git a/629/CH14/EX14.9/ex14_9.txt b/629/CH14/EX14.9/ex14_9.txt
new file mode 100644
index 000000000..ca9201e50
--- /dev/null
+++ b/629/CH14/EX14.9/ex14_9.txt
@@ -0,0 +1,3 @@
+
+The shaft power required to operate the compressor = 118 kW.
+ \ No newline at end of file
diff --git a/629/CH14/EX14.9/example14_9.sce b/629/CH14/EX14.9/example14_9.sce
new file mode 100644
index 000000000..f5be518eb
--- /dev/null
+++ b/629/CH14/EX14.9/example14_9.sce
@@ -0,0 +1,13 @@
+clear
+clc
+//Example 14.9 CENTRIFUGAL COMPRESSOR
+p1=100; //pressure [kPa]
+p2=200; //[kPa]
+k=1.4;
+Q1=1;//discharge [m^3/s]
+eta=0.65; //efficiency
+//Theoretical power
+Ptheo=(k/(k-1))*Q1*p1*[(p2/p1)^((k-1)/k)-1] //[kW]
+//Shaft power
+Pshaft=Ptheo/eta //[kW]
+printf("\nThe shaft power required to operate the compressor = %.f kW.\n",Pshaft) \ No newline at end of file