diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /611/CH9/EX9.16/Chap9_Ex16_R1.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '611/CH9/EX9.16/Chap9_Ex16_R1.sce')
-rwxr-xr-x | 611/CH9/EX9.16/Chap9_Ex16_R1.sce | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/611/CH9/EX9.16/Chap9_Ex16_R1.sce b/611/CH9/EX9.16/Chap9_Ex16_R1.sce new file mode 100755 index 000000000..7187ff4ec --- /dev/null +++ b/611/CH9/EX9.16/Chap9_Ex16_R1.sce @@ -0,0 +1,47 @@ +// Y.V.C.Rao ,1997.Chemical Engineering Thermodynamics.Universities Press,Hyderabad,India.
+
+//Chapter-9,Example 16,Page 339
+//Title: Enthalpy and entropy departure using the virial coefficient correlation
+//================================================================================================================
+clear
+clc
+
+//INPUT
+T=600;//temperature of the equimolar n-butane and n-octane mixture in K
+P=16;//pressure of the equimolar n-butane and n-octane mixture in bar
+Tc=[425.2;569.4];//critical temperature of n-butane and n-octane in K
+Pc=[37.97;24.97];//critical pressure of n-butane and n-octane in bar
+w=[0.199;0.398];//acentric factor of n-butane and n-octane (no unit)
+Tr1=1.411;//reduced temperature of n-butane (no unit) taken from Example (9.7)
+Tr2=1.054;//reduced temperature of n-octane (no unit) taken from Example (9.7)
+Tr_12=1.24;//reduced temperature for computing the mixture interaction virial coefficient (no unit) taken from Example(9.7)
+Pc_12=2.978;//Pc_ij in MPa taken from Example(9.7)
+Tc_12=483.9;//Tc_ij in K taken from Example(9.7)
+w_12=0.2985;// w_ij (no unit) taken from Example(9.7)
+Bm=-309*10^-6;//second virial coefficient in m^3/mol taken from Example (9.7)
+R=8.314;//universal gas constant in J/molK
+
+//CALCULATION
+//For convenience, n-butane is taken as 1 and n-octane as 2
+y1=0.5;//mole fraction of n-butane in the equimolar mixture
+y2=0.5;//mole fraction of n-octane in the equimolar mixture
+dB0_dTr1=0.675/(Tr1^2.6);//calculation of dBij0/dTrij using Eq.(8.73) (no unit)
+dB0_dTr2=0.675/(Tr2^2.6);//calculation of dBij0/dTrij using Eq.(8.73) (no unit)
+dB1_dTr1=0.722/(Tr1^5.2);//calculation of dBij1/dTrij using Eq.(8.74) (no unit)
+dB1_dTr2=0.722/(Tr2^5.2);//calculation of dBij1/dTrij using Eq.(8.74) (no unit)
+dB0_dTr12=0.675/(Tr_12^2.6);//calculation of dBij0/dTrij using Eq.(9.114) (no unit)
+dB1_dTr12=0.722/(Tr_12^5.2);//calculation of dBij1/dTrij using Eq.(9.115) (no unit)
+dB1_dT=(R/(Pc(1,:)*10^5))*((dB0_dTr1)+(w(1,:)*(dB1_dTr1)));//calculation of dBij/dT using Eq.(9.112) (m^3/molK)
+dB2_dT=(R/(Pc(2,:)*10^5))*((dB0_dTr2)+(w(2,:)*(dB1_dTr2)));//calculation of dBij/dT using Eq.(9.112) (m^3/molK)
+dB12_dT=(R/(Pc_12*10^6))*((dB0_dTr12)+(w_12*(dB1_dTr12)));//calculation of dBij/dT using Eq.(9.112) (m^3/molK)
+dBm_dT=((y1^2)*(dB1_dT))+((2*y1*y2)*(dB12_dT))+((y2^2)*(dB2_dT));//calculation of dBm/dT using Eq.(9.110) (m^3/molK)
+dep_h=((Bm-(T*dBm_dT))*P*10^5)*10^-3;//calculation of enthalpy departure using Eq.(8.69) in kJ/mol
+dep_s=-P*10^5*(dBm_dT);//calculation of entropy departure using Eq.(8.70) in J/molK
+
+//OUTPUT
+mprintf("\n The enthalpy departure of an equimolar mixture of n-butane and n-octane using the virial coefficient correlation = %f kJ/mol\n",dep_h);
+mprintf("\n The entropy departure of an equimolar mixture of n-butane and n-octane using the virial coefficient correlation = %0.3f J/mol K\n",dep_s);
+
+//===============================================END OF PROGRAM===================================================
+
+
|