diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /611/CH8/EX8.7 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '611/CH8/EX8.7')
-rwxr-xr-x | 611/CH8/EX8.7/Chap8_Ex7_R1.sce | 31 |
1 files changed, 31 insertions, 0 deletions
diff --git a/611/CH8/EX8.7/Chap8_Ex7_R1.sce b/611/CH8/EX8.7/Chap8_Ex7_R1.sce new file mode 100755 index 000000000..e5d5a8699 --- /dev/null +++ b/611/CH8/EX8.7/Chap8_Ex7_R1.sce @@ -0,0 +1,31 @@ +// Y.V.C.Rao ,1997.Chemical Engineering Thermodynamics.Universities Press,Hyderabad,India.
+
+//Chapter-8,Example 7,Page 282
+//Title: Enthalpy and entropy departure using the Peng-Robinson equation of state
+//================================================================================================================
+clear
+clc
+
+//INPUT
+T=427.85;//temperature of n-octane vapour in K
+P=0.215;//pressure of n-octane vapour in MPa
+S=0.9457;//constant used in the Peng-Robinson equation of state,from Example(3.16)
+alpha=1.2677;//constant used in the Peng-Robinson equation of state,from Example(3.16)
+a=5.2024;//constant used in the Peng-Robinson equation of state,from Example(3.16) in (m^6 Pa mol^-2)
+b=1.4750*10^-4;//constant used in the Peng-Robinson equation of state,from Example(3.16) in m^3/mol
+B=8.9151*10^-3;//factor used in the Cardan's method for solving the Peng-Robinson equation of state,from Example(3.16) (no unit)
+Z=0.9151;//compressibility factor taken from Example (3.16) (no unit)
+R=8.314;//universal gas constant in J/molK
+Tc=569.4;//critical temperature of n-octane in K
+
+//CALCULATION
+da_dT=(-a*S)/(sqrt (alpha*T*Tc));//calculation of da/dT using Eq.(8.47)
+//calculation of the enthalpy departure using Eq.(8.45) in J/mol
+dep_h=(R*T*(Z-1))+(((((T*da_dT)-a)/(2*sqrt(2)*b)))*(log ((Z+(B*(1+sqrt (2))))/(Z+(B*(1-sqrt (2)))))));
+dep_s=(R*log (Z-B))+((1/(2*sqrt (2)*b))*(da_dT)*(log ((Z+(B*(1+sqrt (2))))/(Z+(B*(1-sqrt (2)))))));//calculation of the entropy departure using Eq.(8.46)in J/molK
+
+//OUTPUT
+mprintf("\n The enthalpy departure for n-octane vapour using the Peng-Robinson equation of state = %0.1f J/mol\n",dep_h);
+mprintf("\n The entropy departure for n-octane vapour using the Peng-Robinson equation of state = %0.3f J/mol K\n",dep_s);
+
+//===============================================END OF PROGRAM===================================================
|