summaryrefslogtreecommitdiff
path: root/611/CH3/EX3.16
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /611/CH3/EX3.16
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '611/CH3/EX3.16')
-rwxr-xr-x611/CH3/EX3.16/Chap3_Ex16_R1.sce66
1 files changed, 66 insertions, 0 deletions
diff --git a/611/CH3/EX3.16/Chap3_Ex16_R1.sce b/611/CH3/EX3.16/Chap3_Ex16_R1.sce
new file mode 100755
index 000000000..5b51c354c
--- /dev/null
+++ b/611/CH3/EX3.16/Chap3_Ex16_R1.sce
@@ -0,0 +1,66 @@
+// Y.V.C.Rao ,1997.Chemical Engineering Thermodynamics.Universities Press,Hyderabad,India.
+
+//Chapter-3,Example 16,Page 78
+//Title:Volume using Peng-Robinson equation of state
+//================================================================================================================
+clear
+clc
+
+//INPUT
+T=427.85;//temperature in K
+P=0.215;//saturation pressure in MPa
+Tc=569.4;//critical temperature of n-octane in K
+Pc=24.97;//critical pressure of n-octane in bar
+w=0.398;//acentric factor (no unit)
+R=8.314;//universal gas constant in (Pa m^3)/(mol K)
+
+//CALCULATION
+//The Cardan's method simplifies the equation of state into a cubic equation which can be solved easily
+//The general form of the cubic equation is (Z^3)+(alpha*Z^2)+(beeta*Z)+gaamma=0, where alpha,beeta and gaamma are determined using established relations
+
+Tr=T/Tc;//calculation of reduced temperature (no unit)
+Pr=(P*10^6)/(Pc*10^5);//calculation of reduced pressure (no unit)
+S=0.37464+(1.54226*w)-(0.26992*w^2);//calculation of S using Eq.(3.79)
+alpha1=(1+(S*(1-sqrt(Tr))))^2;//calculation of alpha1 using Eq.(3.78)
+a=(0.45724*R^2*Tc^2*alpha1)/(Pc*10^5);//calculation of the Peng-Robinson constant in (m^6 Pa mol^-2) using Eq.(3.76)
+b=(0.07780*R*Tc)/(Pc*10^5);//calculation of the Peng-Robinson constant in m^3/mol using Eq.(3.77)
+A=(a*P*10^6)/(R*T)^2;//calculation of A to determine alpha,beeta and gaamma by using Eq.(3.25)
+B=(b*P*10^6)/(R*T);//calculation of B to determine alpha,beeta and gaamma by using Eq.(3.26)
+alpha=-1+B;//calculation of alpha for Peng-Robinson equation of state using Table (3.2)
+beeta=A-(2*B)-(3*B^2);//calculation of beeta for Peng-Robinson equation of state using Table (3.2)
+gaamma=-(A*B)+(B^2)+(B^3);//calculation of gaamma for Peng-Robinson equation of state using Table (3.2)
+p=beeta-(alpha^2)/3;//calculation of p to determine the roots of the cubic equation using Eq.(3.29)
+q=((2*alpha^3)/27)-((alpha*beeta)/3)+gaamma;//calculation of q to determine the roots of the cubic equation using Eq.(3.30)
+D=(((q)^2)/4)+(((p)^3)/27);//calculation of D to determine the nature of roots using Eq.(3.31)
+
+if D>0 then
+ Z=((-q/2)+(sqrt(D)))^(1/3)+((-q/2)-(sqrt(D)))^(1/3)-(alpha/3);//One real root given by Eq.(3.32)
+ vf=((Z)*R*t)/(P*10^6);//Volume of saturated liquid calculated as vf=(Z*R*T)/P in m^3/mol
+ vg=((Z)*R*t)/(P*10^6);//Volume of saturated vapour calculated as vg=(Z*R*T)/P in m^3/mol
+else if D==0 then
+ Z1=((-2*(q/2))^(1/3))-(alpha/3);//Three real roots and two equal given by Eq.(3.33)
+ Z2=((q/2)^(1/3))-(alpha/3);
+ Z3=((q/2)^(1/3))-(alpha/3);
+ Z=[Z1 Z2 Z3];
+ vf=(min(Z)*R*T)/(P*10^6);//Volume of saturated liquid calculated as vf=(Z*R*T)/P in m^3/mol
+ vg=(max(Z)*R*T)/(P*10^6);//Volume of saturated vapour calculated as vg=(Z*R*T)/P in m^3/mol
+ else
+ r=sqrt((-(p^3)/27));//calculation of r using Eq.(3.38)
+ theta=acos((-(q)/2)*(1/r));//calculation of theta in radians using Eq.(3.37)
+ Z1=(2*(r^(1/3))*cos(theta/3))-(alpha/3);
+ Z2=(2*(r^(1/3))*cos(((2*%pi)+theta)/3))-(alpha/3);//Three unequal real roots given by Eqs.(3.34,3.35 and 3.36)
+ Z3=(2*(r^(1/3))*cos(((4*%pi)+theta)/3))-(alpha/3);
+ Z=[Z1 Z2 Z3];
+ vf=(min(Z)*R*T)/(P*10^6);//Volume of saturated liquid calculated as vf=(Z*R*T)/P in m^3/mol
+ vg=(max(Z)*R*T)/(P*10^6);//Volume of saturated vapour calculated as vg=(Z*R*T)/P in m^3/mol
+
+ end
+end
+
+//OUTPUT
+mprintf('\n The volume occupied by n-octane (saturated vapour) obtained by Peng-Robinson equation of state= %f m^3/mol\n',vg);
+mprintf('\n The volume occupied by n-octane (saturated liquid) obtained by Peng-Robinson equation of state= %f m^3/mol\n',vf);
+
+
+
+//===============================================END OF PROGRAM===================================================