diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /608/CH35/EX35.03 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '608/CH35/EX35.03')
-rwxr-xr-x | 608/CH35/EX35.03/35_03.sce | 29 |
1 files changed, 29 insertions, 0 deletions
diff --git a/608/CH35/EX35.03/35_03.sce b/608/CH35/EX35.03/35_03.sce new file mode 100755 index 000000000..faf0183a8 --- /dev/null +++ b/608/CH35/EX35.03/35_03.sce @@ -0,0 +1,29 @@ +//Problem 35.03: For the network shown in Figure 35.3, determine (a) the value of the load resistance R required for maximum power transfer, and (b) the value of the maximum power transferred.
+
+//initializing the variables:
+rv = 200; // in volts
+thetav = 0; // in degrees
+R1 = 100; // in ohm
+C = 1E-6; // in farad
+f = 1000; // in Hz
+
+//calculation:
+//voltage
+V = rv*cos(thetav*%pi/180) + %i*rv*sin(thetav*%pi/180)
+//Capacitive reactance, Xc
+Xc = 1/(2*%pi*f*C)
+//Hence source impedance,
+z = R1*(%i*Xc)/(R1 + %i*Xc)
+//maximum power transfer is achieved when R = mod(z)
+R = (real(z)^2 + imag(z)^2)^0.5
+//Total circuit impedance at maximum power transfer condition,
+ZT = z + R
+//Current I flowing in the load is given by
+I = V/ZT
+Imag = (real(I)^2 + imag(I)^2)^0.5
+//maximum power transferred,
+P = R*Imag^2
+
+printf("\n\n Result \n\n")
+printf("\n (a)maximum power transfer occurs when R is %.2f ohm",R)
+printf("\n (b) maximum power delivered is %.0f W",P)
\ No newline at end of file |