summaryrefslogtreecommitdiff
path: root/608/CH13/EX13.14
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /608/CH13/EX13.14
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '608/CH13/EX13.14')
-rwxr-xr-x608/CH13/EX13.14/13_14.sce21
1 files changed, 21 insertions, 0 deletions
diff --git a/608/CH13/EX13.14/13_14.sce b/608/CH13/EX13.14/13_14.sce
new file mode 100755
index 000000000..2272c88de
--- /dev/null
+++ b/608/CH13/EX13.14/13_14.sce
@@ -0,0 +1,21 @@
+//Problem 13.14: Use Norton’s theorem to determine the current flowing in the 3 ohm resistance of the network shown in Figure 13.36(a). The voltage source has negligible internal resistance.
+
+//initializing the variables:
+V = 24; // in volts
+R1 = 20; // in ohms
+R2 = 5; // in ohms
+R3 = 10; // in ohms
+R4 = 5/3; // in ohms
+R5 = 3; // in ohms
+
+//calculation:
+//The 3ohm resistance branch is short-circuited as shown in Figure 13.36(b).
+//Figure 13.36(c) is equivalent to Figure 13.36(b).
+Isc = V/R2
+//the resistance ‘looking-in’ at a break made between A and B is given by
+r = R3*R2/(R3 + R2)
+//From the Norton equivalent network shown in Figure 13.36(f) the current in the 3ohm resistance is given by:
+I = (r/(r + R4 + R5))*Isc
+
+printf("\n\n Result \n\n")
+printf("\n the current in the 3ohm resistance is given by %.0f A",I) \ No newline at end of file