summaryrefslogtreecommitdiff
path: root/587/CH7
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /587/CH7
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '587/CH7')
-rwxr-xr-x587/CH7/EX7.1/example7_1.sce33
-rwxr-xr-x587/CH7/EX7.2/example7_2.sce44
-rwxr-xr-x587/CH7/EX7.3/example7_3.sce42
-rwxr-xr-x587/CH7/EX7.4/example7_4.sce17
-rwxr-xr-x587/CH7/EX7.5/example7_5.sce20
-rwxr-xr-x587/CH7/EX7.6/example7_6.sce31
-rwxr-xr-x587/CH7/EX7.7/example7_7.sce44
-rwxr-xr-x587/CH7/EX7.8/example7_8.sce35
-rwxr-xr-x587/CH7/EX7.9/example7_9.sce32
9 files changed, 298 insertions, 0 deletions
diff --git a/587/CH7/EX7.1/example7_1.sce b/587/CH7/EX7.1/example7_1.sce
new file mode 100755
index 000000000..b8a237e46
--- /dev/null
+++ b/587/CH7/EX7.1/example7_1.sce
@@ -0,0 +1,33 @@
+clear;
+clc;
+
+//Example7.1[Flow of hot oil over a Flat Plate]
+//Given:-
+T_oil=60;//Temp of engine oil[degree Celcius]
+T_plate=20;//Temp of flat plate[degree Celcius]
+Rec=5*10^5;//Critical reynolds number for laminar flow
+Tf=(T_oil+T_plate)/2;//Film temperature[degree Celcius]
+v=2;//[m/s]
+//Properties of engine oil at film temperature
+rho=876;//[kg/m^3]
+Pr=2962;//Prandtl number
+k=0.1444;//[W/m.degree Celcius]
+nu=2.485*10^(-4);//dynamic viscosity[m^2/s]
+L=5;//Length of plate[m]
+ReL=(v*L)/nu;
+if(ReL<Rec) then,
+ disp("We have laminar flow over the entire plate")
+ Cf=1.33*(ReL^(-0.5));
+ disp(Cf,"The average friction coefficient is")
+ //Pressure Drag is zero and thus Cd=Cf for parallel floe over a flat plate
+ Fd=Cf*5*1*rho*(v^2)/2;//[N]
+ disp("N",Fd,"The drag force acting on the plate per unit width is")
+else,
+ disp("flow is turbulent")
+end
+Nu=0.664*(ReL^(0.5))*(Pr^(1/3));//Nusselt Number
+disp(ceil(Nu),"Nusselt Number is")
+h=k*Nu/L;//[W/m^2.degree Celcius]
+disp("W/m^.degree Celcius",h,"Convective heat transfer coefficient is")
+Q=h*(5*1)*(T_oil-T_plate);//[W]
+disp("W",round(Q),"Heat flow rate is") \ No newline at end of file
diff --git a/587/CH7/EX7.2/example7_2.sce b/587/CH7/EX7.2/example7_2.sce
new file mode 100755
index 000000000..780a50018
--- /dev/null
+++ b/587/CH7/EX7.2/example7_2.sce
@@ -0,0 +1,44 @@
+clear;
+clc;
+
+//Example7.2[Cooling of a Hot Block by Forced Air at High Elevation]
+//Given:-
+ReC=5*10^5;//critical Reynolds number
+v=8;//Velocity of air[m/s]
+T_air=20;//Initial Temperature of air[degree Celcius]
+T_plate=140;//Temperature of flat plate[degree Celcius]
+T_film=(T_air+T_plate)/2;//Film Temperature of air[degree Celcius]
+//Properties of air at film temperature[degree Celcius]
+k=0.02953;//[W/m.degree Celcius]
+Pr=0.7154;//Prandtl Number
+nu=2.097*10^(-5);//Kinematic Viscosity at 1 atm Pressure [m^2/s]
+nu_ac=nu/0.823;//Kinematic viscosity at pressure 0.823 atm[m^2/s]
+//Solution(a)
+L1=6;//Characteristic length of plate along the flow of air[m]
+w1=1.5;//width[m]
+ReL1=(v*L1)/nu_ac;//Reynolds number
+if(ReL1>ReC) then,
+ disp("Flow is not laminar")
+ //We have average Nusselt Number
+ Nu1=((0.037*(ReL1^(0.8)))-871)*(Pr^(1/3));
+ disp(ceil(Nu1),"Nusselt Number is")
+ h1=k*Nu1/L1;//[W/m^2.degree Celcius]
+ As1=w1*L1;//Flow Area of plate[m^2]
+ Q1=h1*As1*(T_plate-T_air);
+ disp("W",Q1,"Heat Flow Rate is")
+else,
+ disp("Flow is laminar")
+end
+//Solution(b)
+L2=1.5;//Characteristic length of plate along flow of air[m]
+ReL2=v*L2/nu_ac;//Reynolds Number
+if(ReL2<Rec) then,
+ disp("Flow is laminar")
+ Nu2=0.664*(ReL2^(0.5))*(Pr^(1/3));
+ disp(ceil(Nu2),"Nusselt Number is")
+ h2=k*Nu2/L2;//[W/m^2.degree Celcius]
+ Q2=h2*As1*(T_plate-T_air);
+ disp("W",ceil(Q2),"The heat transfer rate is")
+else,
+ disp("Flow is turbulent")
+end
diff --git a/587/CH7/EX7.3/example7_3.sce b/587/CH7/EX7.3/example7_3.sce
new file mode 100755
index 000000000..647f50b8a
--- /dev/null
+++ b/587/CH7/EX7.3/example7_3.sce
@@ -0,0 +1,42 @@
+clear;
+clc;
+
+//Example7.3[Cooling of Plastic Sheets by Forced Air]
+//Given:-
+T_p=95;//Temp of plastic Sheet[degree Celcius]
+T_air=25;//Temp of air[degree Celcius]
+v=3;//Velocity of flowing air[m/s]
+L=0.6;//Length of plastic sheet[m]
+w=1.2;//width[m]
+k=0.02808;//[W/m.degree Celcius]
+Pr=0.7202;//Prandtl Number
+nu=1.896*10^(-5);//[m^2/s]
+rho=1200;//[kg/m^3]
+Cp=1700;//[J/kg.degree Celcius]
+vp=(9/60);//Velocity of moving plastic[m/s]
+tp=0.001;//Thickness of plastic[m]
+ReC=5*10^5;//Crictical Reynolds Number
+e=0.9;//emissivity
+//Solution(a)
+L1=2*L;//Considering both sides of plastic sheet[m]
+ReL1=v*L1/nu;//Reynolds number
+if(ReL1<ReC) then,
+ disp("(a) Flow is laminar")
+ Nu1=0.664*(ReL1^0.5)*(Pr^(1/3));
+ disp(Nu1,"The nusselt number is")
+ h=k*Nu1/L1;//[W/m^2.degree Celcius]
+ As=L1*w;//[m^2]
+ Q_conv=h*As*(T_p-T_air);//[W]
+ disp("W",ceil(Q_conv),"The covection heat flow rate is")
+ Q_rad=e*(5.67*10^(-8))*As*(((T_p+273)^4)-((T_air+273)^4));//[W]
+ disp("W",(Q_rad),"Radiation heat transfer rate is")
+ Q_total=Q_conv+Q_rad;//[W]
+ disp("W",ceil(Q_total),"The rate of cooling of the plastic sheet by combined convection and radiation is")
+else
+ disp("(a) The Flow is turbulent")
+end
+//Solution(b)
+At=w*tp;//[m^2]
+m=rho*At*vp;//ass of th plastic rolling out per unit time[kg/s]
+T2=T_p+(-Q_total/(m*Cp));//[degree Celcius]
+disp("degree Celcius",T2,"(b) The temperature of the plastic sheet as it leaves the cooling section is")
diff --git a/587/CH7/EX7.4/example7_4.sce b/587/CH7/EX7.4/example7_4.sce
new file mode 100755
index 000000000..d392eb295
--- /dev/null
+++ b/587/CH7/EX7.4/example7_4.sce
@@ -0,0 +1,17 @@
+clear;
+clc;
+
+//Example7.4[Drag Force Acting on a Pipe in a River]
+//Given:-
+T_water=15;//[degree Celcius]
+vw=4;//Velocity of water[m/s]
+od=0.022;//Outer diameter of pipe[m]
+w=30;//width of river[m]
+//At 15 degree C properties of water
+rho=999.1;//[kg/m^3]
+mu=1.138*10^(-3);//viscosity[kg/m.s]
+Re=(rho*vw*od)/mu;//Reynolds number
+Cd=1.0;//Dreag coefficient
+A=w*od;//Frontal area for flow past a cylinder[m^2]
+Fd=Cd*A*rho*(vw^2)/2;//[N]
+disp("kN",Fd/1000,"The drag force acting on the pipe is") \ No newline at end of file
diff --git a/587/CH7/EX7.5/example7_5.sce b/587/CH7/EX7.5/example7_5.sce
new file mode 100755
index 000000000..981db8e7f
--- /dev/null
+++ b/587/CH7/EX7.5/example7_5.sce
@@ -0,0 +1,20 @@
+clear;
+clc;
+
+//Example7.5[Heat Loss from a Steam Pipe in Windy Air]
+d=0.1//diameter of pipe[m]
+Ts=110;//Temp of ecternal surface of pipe[degree Celcius]
+Ta=10;//Temp of air[degree Celcius]
+va=8;//Velocity of air[m/s]
+Tf=(Ts+Ta)/2;//Film temperature[degree Celcius]
+k=0.02808;//[W/m.degree Celcius]
+Pr=0.7202;//Prandtl Number
+nu=1.896*10^(-5);//Kinematic viscosity[m^2/s]
+//Solution:-
+Re=(va*d)/nu;//Reynolds Number
+Nu=0.3+((0.62*(Re^(0.5))*(Pr^(1/3)))/((1+((0.4/Pr)^(2/3)))^(1/4))*[(1+((Re/282000)^(5/8)))^(4/5)]);
+disp(round(Nu),"The nusselt number is")
+h=k*Nu/d;//[W/m^2.degree Celcius]
+As=%pi*d*1;//Area of pipe per unit length[m^2]
+Q=h*As*(Ts-Ta);//[W]
+disp("W",ceil(Q),"The rate of heat loss from the pipe per unit of its length is") \ No newline at end of file
diff --git a/587/CH7/EX7.6/example7_6.sce b/587/CH7/EX7.6/example7_6.sce
new file mode 100755
index 000000000..eab4b82ae
--- /dev/null
+++ b/587/CH7/EX7.6/example7_6.sce
@@ -0,0 +1,31 @@
+clear;
+clc;
+
+//Example7.6[Cooling of a Steel Ball by Forced Air]
+//Given:-
+rho=8055;//[kg/m^3]
+Cp=480;//[J/kg.degree Celcius]
+To=300;//Temp of oven[degree Celcius]
+Ta=25;//Temp of air[degree Celcius]
+va=3;//Velocity of air[m/s]
+Ts=200;//Dropped temp of surface of ball[degree Celcius]
+Ts_avg=(Ts+To)/2;//[degree Celcius]
+d=0.25;//[m]
+mu_s=2.76*10^(-5);//Dynamic Viscosity at average surface temperature[kg/m.s]
+//Properties of air at 25 degree Celcius
+k=0.02551;//[W/m.degree Celcius]
+nu=1.562*10^(-5);//kinematic viscosity[m^2/s]
+mu=1.849*10^(-5);//Dynamic viscosity of air at 25 degree C[kg/m.s]
+//Solution:-
+Re=va*d/nu;//[Reynolds Number]
+Nu=2+[(0.4*(Re^(1/2)))+(0.06*(Re^(2/3)))]*(Pr^(0.4))*((mu/mu_s)^(1/4));
+disp(ceil(Nu),"The Nusselt number is")
+h=k*Nu/d;//[W/m^2.degree Celcius]
+As=%pi*(d^2);//[m^2]
+Q_avg=h*As*(Ts_avg-Ta);//[W]
+disp("W",ceil(Q_avg),"The average rate of heat transfer from Newtons Law of cooling is")
+m=rho*%pi*(d^3)/6;//[kg]
+Q_total=m*Cp*(To-Ts);//[J]
+disp("J",Q_total,"The total heat transferred from the ball is")
+delta_t=Q_total/Q_avg;//[s]
+disp("hour",delta_t/3600,"The time of cooling is") \ No newline at end of file
diff --git a/587/CH7/EX7.7/example7_7.sce b/587/CH7/EX7.7/example7_7.sce
new file mode 100755
index 000000000..f8004016b
--- /dev/null
+++ b/587/CH7/EX7.7/example7_7.sce
@@ -0,0 +1,44 @@
+clear;
+clc;
+
+//Example7.7[Preheating Air by Geothermal Water in a Tube Bank]
+//Given:-
+Ta_in=20;//Temp of air whileentering the duct[degree Celcius]
+v=4.5;//mean velocity[m/s]
+T_tw=120;//Temp of geothermal water[degree Celcius]
+od=0.015;//Outer Diameter of tubes[m]
+SL=0.05,ST=0.05;//Longitudinal and transverse pitches[m]
+//Properties of air at mean temp
+k=0.02808;//[W/m.K]
+rho=1.059;//[kg/m^3]
+Cp=1007;//[J/kg.K]
+Pr=0.7202;//Prandtl no
+Pr_s=0.7073;//Prandtl no at temp = 120 degree C
+mu=2.008*10^(-5);//Viscosity[kg/m.s]
+rho_in=1.204;//density of air at inlet conditions[kg/m^3]
+//Solution:-
+v_max=(ST*v)/(ST-od);//maximu velocity[m/s]
+Re=rho*v_max*od/mu;//Reynolds Number
+disp(Re,"Reynolds number is")
+Nu=0.27*(Re^(0.63))*(Pr^(0.36))*((Pr/Pr_s)^0.25);
+disp(Nu,"The nusselt number is")
+Nl=6;//No of rows of tubes
+Nt=10;//No of tubes in each row
+F=0.945;//For Nl=6, correction factor
+Nu_Nl=F*Nu;
+h=Nu_Nl*k/od;//[W/m^2.degree Celcius]
+N=Nl*Nt;//Total no of tubes
+//For unit tube length
+As=N*%pi*od*1;//[m^2]
+m=rho_in*v*(Nt*ST*1);//[kg/s]
+disp("kg/s",m,"Mass flow rate of air is")
+Te=T_tw-((T_tw-Ta_in)*exp((-As*h)/(m*Cp)));//[degree Celcius]
+disp("degree Celcius",Te,"Fluid exit temperature is")
+T_ln=(((T_tw-Te)-(T_tw-Ta_in))/(log((T_tw-Te)/(T_tw-Ta_in))));//[degree Celcius]
+disp("degree Celcius",T_ln,"Log mean temperature difference is")
+Q=h*As*T_ln;//[W]
+disp("W",Q,"Rate of heat transfer is")
+//For given Re and SL/od ratio friction coefficient is
+f=0.16;
+delta_P=Nl*f*rho*(v_max^2)/2;//[Pa]
+disp("Pa",delta_P,"The pressure drop across the tube bank is")
diff --git a/587/CH7/EX7.8/example7_8.sce b/587/CH7/EX7.8/example7_8.sce
new file mode 100755
index 000000000..736b5f6c2
--- /dev/null
+++ b/587/CH7/EX7.8/example7_8.sce
@@ -0,0 +1,35 @@
+clear;
+clc;
+
+//Example7.8[Effect of insulation on Surface Temperature]
+//Given:-
+Ti=120;//Initial temp of hot water[degree Celcius]
+k_pipe=15;//W/m.degree Celcius
+ri=0.008,ro=0.01;//Inner and outer radii[m]
+t=0.002;//Thickness of pipe[m]
+To=25;//Ambient temperature[degree Celcius]
+Ts=40;//Maximum Temp of outer surface of insulation[degree Celcius]
+hi=70,ho=20;//Heat transfer coefficients inside and outside of the pipe[W/m^2.degree Celcius]
+k_insu=0.038;//[W/m.degree Celcius]
+L=1;//section of pipe[m]
+//Solution:-
+//Areas of surfaces exposed to convection
+A1=2*%pi*ri*L;//[m^2]
+//Individual Thermal Resistances
+R_conv1=1/(hi*A1);//[degree Celcius/W]
+R_pipe=(log(ro/ri))/(2*%pi*k_pipe*L);//[degree Celcius/W]
+//R_insu=(log(r3/ri))/(2*%pi*k_insu*L)
+//R_conv2=1/(ho*2*%pi*r3*L)
+//R_total=R_conv1+R_conv2+R_pipe+R_insu
+//Q=(Ti-To)/R_total;
+//Q=(Ts-To)/R_conv2;
+//Equating both Q we get
+function[r]=radius(r3)
+ r(1)=1884*r3(1)*(0.284+0.0024+4.188*log((r3(1))/0.01)+(1/(125.6*r3(1))))-95;
+ deff('[r]=radius(r3)',['radius_3=1884*r3(1)*(0.284+0.0024+4.188*log((r3(1))/0.01)+(1/(125.6*r3(1))))-95'])
+endfunction
+ disp("m",xs,"The outer radius of the insulation is")
+ t=xs-ro;//[m]
+ disp("cm",100*t,"The minimum thickness of fibreglass insulation required is")
+ ///Correct output will be displayed after executing the codes once and then re-executin them
+ \ No newline at end of file
diff --git a/587/CH7/EX7.9/example7_9.sce b/587/CH7/EX7.9/example7_9.sce
new file mode 100755
index 000000000..bfbd1ec75
--- /dev/null
+++ b/587/CH7/EX7.9/example7_9.sce
@@ -0,0 +1,32 @@
+clear;
+clc;
+
+//Example7.9[Optimum Thickness of insulation]
+//Given:-
+k_insu=0.024;//[Btu/h.ft^2.degree Farenhiet]
+Ts=180;//temp of exposed surface of oven[degree F]
+Ta=75;//temp of ambient air[degree F]
+L=12;//length[ft]
+d=8;//Diameter[m]
+time=5840;//[h/year]
+ho=3.58;//Heat transfer coefficient on the outer surface[tu/h.ft^2.degree F]
+unit_c1=0.75;//[$/therm]
+unit_c2=2.70;//Unit cost of insulation[4/ft^2]
+neta=0.8;//Efficiency
+//Solution:-
+As=(2*%pi*((d/2)^2))+(2*%pi*L*d/2);//Exposed surface area[ft^2]
+disp(As)
+Q=ho*ceil(As)*(Ts-Ta);//[Btu/h]
+Q_total=(1/neta)*Q*time/(100000);//[therms]
+disp("Therms",Q_total,"The total amount of heat loss from the surrounding is")
+annual_c1=Q_total*unit_c1;//[$/year]
+disp("per year",annual_c1,"The annual fuel cost of the oven before insulation is $")
+R_conv=1/(ho*ceil(As));
+R_insu=(1/12)/(k_insu*ceil(As));//Thickness id 1inch or 1/12 ft
+Q_insu=(Ts-Ta)/(R_conv+R_insu);//[Btu/hr]
+Q_insu_total=(1/neta)*Q_insu*time*(1/100000);//[therms]
+disp("therms",Q_insu_total,"Total energy consumption by oven on being insulated")
+annual_c2=Q_insu_total*unit_c1;//[$/yr]
+insu_cost=(unit_c2*ceil(As));//Insulation cost[$]
+Total_c=annual_c2+insu_cost;//[$]
+disp(Total_c,"The sum of insulation cost and heat loss costs is $")