diff options
author | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
commit | f35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch) | |
tree | eb72842d800ac1233e9d890e020eac5fd41b0b1b /587/CH7/EX7.6/example7_6.sce | |
parent | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff) | |
download | Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2 Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip |
updated the code
Diffstat (limited to '587/CH7/EX7.6/example7_6.sce')
-rwxr-xr-x | 587/CH7/EX7.6/example7_6.sce | 61 |
1 files changed, 31 insertions, 30 deletions
diff --git a/587/CH7/EX7.6/example7_6.sce b/587/CH7/EX7.6/example7_6.sce index eab4b82ae..9bb91d08f 100755 --- a/587/CH7/EX7.6/example7_6.sce +++ b/587/CH7/EX7.6/example7_6.sce @@ -1,31 +1,32 @@ -clear;
-clc;
-
-//Example7.6[Cooling of a Steel Ball by Forced Air]
-//Given:-
-rho=8055;//[kg/m^3]
-Cp=480;//[J/kg.degree Celcius]
-To=300;//Temp of oven[degree Celcius]
-Ta=25;//Temp of air[degree Celcius]
-va=3;//Velocity of air[m/s]
-Ts=200;//Dropped temp of surface of ball[degree Celcius]
-Ts_avg=(Ts+To)/2;//[degree Celcius]
-d=0.25;//[m]
-mu_s=2.76*10^(-5);//Dynamic Viscosity at average surface temperature[kg/m.s]
-//Properties of air at 25 degree Celcius
-k=0.02551;//[W/m.degree Celcius]
-nu=1.562*10^(-5);//kinematic viscosity[m^2/s]
-mu=1.849*10^(-5);//Dynamic viscosity of air at 25 degree C[kg/m.s]
-//Solution:-
-Re=va*d/nu;//[Reynolds Number]
-Nu=2+[(0.4*(Re^(1/2)))+(0.06*(Re^(2/3)))]*(Pr^(0.4))*((mu/mu_s)^(1/4));
-disp(ceil(Nu),"The Nusselt number is")
-h=k*Nu/d;//[W/m^2.degree Celcius]
-As=%pi*(d^2);//[m^2]
-Q_avg=h*As*(Ts_avg-Ta);//[W]
-disp("W",ceil(Q_avg),"The average rate of heat transfer from Newtons Law of cooling is")
-m=rho*%pi*(d^3)/6;//[kg]
-Q_total=m*Cp*(To-Ts);//[J]
-disp("J",Q_total,"The total heat transferred from the ball is")
-delta_t=Q_total/Q_avg;//[s]
+clear; +clc; + +//Example7.6[Cooling of a Steel Ball by Forced Air] +//Given:- +rho=8055;//[kg/m^3] +Pr = 0.7296; +Cp=480;//[J/kg.degree Celcius] +To=300;//Temp of oven[degree Celcius] +Ta=25;//Temp of air[degree Celcius] +va=3;//Velocity of air[m/s] +Ts=200;//Dropped temp of surface of ball[degree Celcius] +Ts_avg=(Ts+To)/2;//[degree Celcius] +d=0.25;//[m] +mu_s=2.76*10^(-5);//Dynamic Viscosity at average surface temperature[kg/m.s] +//Properties of air at 25 degree Celcius +k=0.02551;//[W/m.degree Celcius] +nu=1.562*10^(-5);//kinematic viscosity[m^2/s] +mu=1.849*10^(-5);//Dynamic viscosity of air at 25 degree C[kg/m.s] +//Solution:- +Re=va*d/nu;//[Reynolds Number] +Nu=2+[(0.4*(Re^(1/2)))+(0.06*(Re^(2/3)))]*(Pr^(0.4))*((mu/mu_s)^(1/4)); +disp(ceil(Nu),"The Nusselt number is") +h=k*Nu/d;//[W/m^2.degree Celcius] +As=%pi*(d^2);//[m^2] +Q_avg=h*As*(Ts_avg-Ta);//[W] +disp("W",ceil(Q_avg),"The average rate of heat transfer from Newtons Law of cooling is") +m=rho*%pi*(d^3)/6;//[kg] +Q_total=m*Cp*(To-Ts);//[J] +disp("J",Q_total,"The total heat transferred from the ball is") +delta_t=Q_total/Q_avg;//[s] disp("hour",delta_t/3600,"The time of cooling is")
\ No newline at end of file |