diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /587/CH3/EX3.12/example3_12.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '587/CH3/EX3.12/example3_12.sce')
-rwxr-xr-x | 587/CH3/EX3.12/example3_12.sce | 48 |
1 files changed, 48 insertions, 0 deletions
diff --git a/587/CH3/EX3.12/example3_12.sce b/587/CH3/EX3.12/example3_12.sce new file mode 100755 index 000000000..3ff875a66 --- /dev/null +++ b/587/CH3/EX3.12/example3_12.sce @@ -0,0 +1,48 @@ +clear;
+clc;
+
+//Example3.12[Effect of fins on Heat transfer from steam pipes]
+//Given:-
+k_fin=180;//thermal conductivity of aluminium alloy fins[W/m.degree Celcius]
+D_tout=0.03;//Outer diameter of tube[m]
+D_fout=0.06;//Outer diameter of circular fins[m]
+t=0.002;//thickness of fin[m]
+s=0.003;//distance between fins attached to the tube[m]
+n=200;//number of fins per meter of tube
+L=1;//length of tube[m]
+T_surr=25;//Surrounding temperature[degree Celcius]
+T_wall=120;//Temperature of wall of the tube[degree Celcius]
+h=60;//Combined heat transfer coefficient[W/m^2.degree Celcius]
+//Solution:-
+disp("In case of no fins")
+A_nf=%pi*D_tout*L;//Area of tube with no fins attached[m^2]
+//Using Newton's Law of cooling
+Q_nf=h*A_nf*(T_wall-T_surr);//[W]
+disp("W",Q_nf,"Rate of heat transfer when no finis attached")
+//The efficiency of the circular fins attached to a circular tube is plotted in Fig 3.43
+L_fin=(D_fout-D_tout)/2;//[m]
+//In this case we have following corrected parameters
+r2c=(D_fout+t)/2;//[m]
+Lc=L_fin+(t/2);//[m]
+Ap=Lc*t;//[m^2]
+r=r2c/(D_tout/2);
+alpha=(Lc*sqrt(Lc))*sqrt(h/(k_fin*Ap));//efficiency
+disp(alpha)
+//for above value of alpha efficiency is found out from the plot in fig 3.43
+neta=0.96;
+A_f=2*%pi*((r2c^2)-((D_tout/2)^2));//Area of tube with fins attached to it[m^2]
+Q_f_max=h*A_f*(T_wall-T_surr);//maximum rate of heat transfer[W]
+Q_f=neta*Q_f_max;//Heat transfer through tube with fins is efficiency times the maximum rate of heat transfer[W]
+disp("W",Q_f,"Heat transfer due to the finned tube")
+//From unfinned portion
+A_uf=%pi*D_tout*s;//Unfinned area between two consecutive fins[m^2]
+Q_uf=h*A_uf*(T_wall-T_surr);//[W]
+disp("W",Q_uf,"Heat transfer from the unfinned portion of the tube is")
+//Since there are 200 fins per meter of the tube hence 200 interfin spacing
+Q_tf=n*(Q_f+Q_uf);//[W]
+disp("W",Q_tf,"The total Heat transfer from the finned tube is")
+Q_increase=Q_tf-Q_nf;//[W]
+disp("W",Q_increase,"The increase in heat transfer from the tube per meter of length as a result of the addition of fins is")
+eff=Q_tf/Q_nf;//Effectiveness
+disp(eff,"The rate of heat transfer from the steam tube increases by a factor of")
+disp("as a result of adding fins")
|