diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /587/CH13/EX13.10/example13_10.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '587/CH13/EX13.10/example13_10.sce')
-rwxr-xr-x | 587/CH13/EX13.10/example13_10.sce | 42 |
1 files changed, 42 insertions, 0 deletions
diff --git a/587/CH13/EX13.10/example13_10.sce b/587/CH13/EX13.10/example13_10.sce new file mode 100755 index 000000000..5b2b8f9e9 --- /dev/null +++ b/587/CH13/EX13.10/example13_10.sce @@ -0,0 +1,42 @@ +clear;
+clc;
+
+//Example13.10[Heat Transfer through a Tubular Solar Collector]
+k=0.02588;//[W/m.degree Celcius]
+Pr1=0.7282,Pr2=0.7255;//Prandtl no
+nu1=1.608*(10^(-5)),nu2=1.702*10^(-5);//[m^2/s]
+T1=20,T2=40;//[degree Celcius]
+Tavg=((T1+T2)/2)+273;//[K]
+Do=0.1,L=1;//Dimensions of glass tube[m]
+Di=0.05;//Inner diameter of tube[m]
+Q_glass=30;//Rate of heat transfer from the outer surface of the glass cover[W]
+g=9.81;//[m^2/s]
+eo=0.9,ei=0.95;//Emissivity
+//Solution:-
+Ao=%pi*Do*L;//Heat transfer surface area of the glass cover[m^2]
+disp(Ao,Tavg)
+Ra_Do=g*Tavg*(T2-T1)*(Do^3)*Pr1/(nu1);
+disp(Ra_Do,"The Rayleigh number is")
+Nu=((0.6+((0.387*(Ra_Do^(1/6)))/((1+((0.559/Pr1)^(9/16)))^(8/27))))^2);
+disp(Nu,"The nusselt number is")
+ho=k*Nu/Do;//[W/m^2.degree Celcius]
+Qo_conv=ho*Ao*(T2-T1);//[W]
+Qo_rad=eo*5.67*10^(-8)*Ao*(((T2+273)^4)-((T1+273)^4));//[W]
+Qo_total=Qo_conv+Qo_rad;//[W]
+disp("W",Qo_total,"The total rate of heat loss from the glass cover
+Lc=(Do-Di)/2;//The characteristic length
+Ai=%pi*Di*L;//[m^2]
+//Assuming
+T_tube=54,T_cover=26;//Temperature of tube and glass cover[degree Celcius]
+T_avg=((T_tube+T_cover)/2)+273;//[K]
+Ra_L=g*T_avg*(T_tube-T_cover)*(Lc^3)*Pr2/(nu2);
+disp(Ra_L,"The Rayleigh number in this case is")
+F_cyl=((log(Do/Di))^4)/((Lc^3)*(((Di^(-3/5))+(Do^(-3/5)))^5));
+k_eff=0.386*k*((Pr2/(0.861+Pr2))^(1/4))*((F_cyl*Ra_L)^(1/4));
+disp("W/m.degree Celcius",k_eff,"The effective thermal conductivity is")
+QL_conv=2*%pi*k_eff*(T_tube-T_cover)/(log(Do/Di));
+disp("W",QL_conv,"The rate of heat transfer between the cylinders by convection is")
+QL_rad=((5.67*10^(-8))*Ai*(((T_tube+273)^4)-((T_cover+273)^4)))/((1/ei)+(((1-eo)/eo)*(Di/Do)));
+disp("W",QL_rad,"The radiation rate of heat transfer is")
+QL_total=QL_conv+QL_rad;//[W]
+disp("W",QL_total,"The total rate of heat loss from the glass cover is")
\ No newline at end of file |