summaryrefslogtreecommitdiff
path: root/587/CH12
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /587/CH12
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '587/CH12')
-rwxr-xr-x587/CH12/EX12.1/example12_1.sce22
-rwxr-xr-x587/CH12/EX12.2/example12_2.sce13
-rwxr-xr-x587/CH12/EX12.3/example12_3.sce17
-rwxr-xr-x587/CH12/EX12.4/example12_4.sce21
-rwxr-xr-x587/CH12/EX12.5/example12_5.sce27
-rwxr-xr-x587/CH12/EX12.6/example12_6.sce28
6 files changed, 128 insertions, 0 deletions
diff --git a/587/CH12/EX12.1/example12_1.sce b/587/CH12/EX12.1/example12_1.sce
new file mode 100755
index 000000000..d13342ebf
--- /dev/null
+++ b/587/CH12/EX12.1/example12_1.sce
@@ -0,0 +1,22 @@
+clear;
+clc;
+
+//Example12.1[Radiation Emission from a Black Ball]
+//Given:-
+T=800;//Temperature of suspended ball[K]
+D=0.2;//Diameter[m]
+C1=3.74177*10^8;//[(micrometer^4)/m^2]
+C2=1.43878*10^4;//[micrometer.K]
+lambda=3;//[micrometer]
+//Solution (a):-
+Eb=(5.67*10^(-8))*(T^4);//[W/m^2]
+disp("of energy in the form of energy in the form of electromagnetic radiation per second per m^2","kJ",Eb/1000,"The ball emits")
+//Solution(b):-
+As=%pi*(D^2);//[m^2]
+disp("m^2",As,"The total Surface area of the ball is")
+del_t=5*60;//[seconds]
+Q_rad=Eb*As*del_t;//[J]
+disp("kJ",Q_rad/1000,"The total amount of radiation energy emitted from the entire ball is")
+//Solution (c)
+Eb_lambda=C1/((lambda^5)*((exp(C2/(lambda*T)))-1));//[W/m^2.micrometer]
+disp("W/m^2.micrometer",round(Eb_lambda),"The spectral blackbody emissive power")
diff --git a/587/CH12/EX12.2/example12_2.sce b/587/CH12/EX12.2/example12_2.sce
new file mode 100755
index 000000000..408351a9c
--- /dev/null
+++ b/587/CH12/EX12.2/example12_2.sce
@@ -0,0 +1,13 @@
+clear;
+clc;
+
+//Example12.2[Emission of Radiation from a Lightbulb]
+//Given:-
+T=2500;//Temp of the filament[K]
+lambda1=0.4,lambda2=0.76;//Visible ranfe[micrometer]
+f1=0.000321,f2=0.053035;//The black body radiation functions corresponding to lamda1*T and lambda2*T
+//Solution:-
+f3=f2-f1;
+disp(f3,"Fraction of radiation emitted between the two given wavelengths is")
+lambda_max=2897.8/T;//[micrometer]
+disp("micron",lambda_max,"The wavelength at which the emission of radiation from the filament peaks is") \ No newline at end of file
diff --git a/587/CH12/EX12.3/example12_3.sce b/587/CH12/EX12.3/example12_3.sce
new file mode 100755
index 000000000..d0d06386a
--- /dev/null
+++ b/587/CH12/EX12.3/example12_3.sce
@@ -0,0 +1,17 @@
+clear;
+clc;
+
+//Example12.3[Radiation Incident on a small surface]
+//Given:-
+A1=3^10^(-4);//[m^2]
+T1=600;//[k]
+A2=5*10^(-4);//[m^2]
+theta1=%pi*55/180,theta2=%pi*40/180;//[Radian]
+r=0.75;//[m]
+//Solution:-
+w_2_1=(A2*cos(theta2))/(r^2);//[Steradian]
+disp("sr",w_2_1,"The solid angle subtended by a2 when viewed from A1 is")
+I1=(5.67*10^(-8))*(T1^4)/(%pi);//[W/m^2.sr]
+disp("W/m^2.sr",I1,"The Intensity of radiation emitted by A1 is")
+Q1_2=I1*(A1*cos(theta1))*w_2_1;//[W]
+disp("W",Q1_2,"is ","Steradian",w_2_1,"through the solid angle","radians",theta1,"The rate of radiation energy emitted by A1 in the direction of") \ No newline at end of file
diff --git a/587/CH12/EX12.4/example12_4.sce b/587/CH12/EX12.4/example12_4.sce
new file mode 100755
index 000000000..3d04f55e4
--- /dev/null
+++ b/587/CH12/EX12.4/example12_4.sce
@@ -0,0 +1,21 @@
+clear;
+clc;
+
+//Example12.4[Emissivity of a surface and emissive Power]
+e1=0.3;//For 0<= lambda <= 3micron
+e2=0.8;//3micron<=lambda<=7micron
+e3=0.1;//7micron<=lamda<infinity
+lambda1=3,lambda2=7;//[micron]
+T=800;//[K]
+//Solution:-
+p=lambda1*T;//[micron.K]
+q=lambda2*T;//[micron.K]
+//Hence blackbody radiation functions are
+f1=0.140256;
+f2=0.701046;
+f0_1=f1-0;
+f2_inf=1-f2;
+e_T=e1*f1+e2*(f2-f1)+e3*(1-f2);
+disp(e_T,"Average emissivity of the surface is")
+E=e_T*(5.67*10^(-8))*(T^4);//[W/m^2]
+disp("W/m^2",E,"The Emissive Power of the surface is")
diff --git a/587/CH12/EX12.5/example12_5.sce b/587/CH12/EX12.5/example12_5.sce
new file mode 100755
index 000000000..48bdc4841
--- /dev/null
+++ b/587/CH12/EX12.5/example12_5.sce
@@ -0,0 +1,27 @@
+clear;
+clc;
+
+//Example12.6[Selective Absorber and Reflective Surfaces]
+//Given:-
+G_D=400,G_d=300;//Direct and diffuse components of solar radiation[W/m^2]
+Ts=320,T_sky=260;//[K]
+theta=20*%pi/180
+//Solution:-
+G_solar=(G_D*cos(theta))+G_d
+//(a)
+ab_a=0.9,e_a=0.9;//Grey absorber surface
+q_net_rad_a=ab_a*G_solar+e_a*(5.67*10^(-8))*((T_sky^4)-(Ts^4));//[W/m^2]
+disp("W/m^2",round(q_net_rad_a),"(a) The net radiation heat transfer is")
+//(b)
+ab_b=0.1,e_b=0.1;//Grey reflector surface
+q_net_rad_b=ab_b*G_solar+e_b*(5.67*10^(-8))*((T_sky^4)-(Ts^4));//[W/m^2]
+disp("W/m^2",round(q_net_rad_b),"The net radiation heat transfer is")
+//(c)
+ab_c=0.9,e_c=0.1;//Selective Absorber surface
+
+q_net_rad_c=ab_c*G_solar+e_c*(5.67*10^(-8))*((T_sky^4)-(Ts^4));//[W/m^2]
+disp("W/m^2",round(q_net_rad_c),"The net radiation heat transfer is")
+//(d)
+ab_d=0.1,e_d=0.9;//Selective reflector surface
+q_net_rad_d=ab_d*G_solar+e_d*(5.67*10^(-8))*((T_sky^4)-(Ts^4));//[W/m^2]
+disp("W/m^2",round(q_net_rad_d),"The net radiation heat transfer is") \ No newline at end of file
diff --git a/587/CH12/EX12.6/example12_6.sce b/587/CH12/EX12.6/example12_6.sce
new file mode 100755
index 000000000..dde18ae6e
--- /dev/null
+++ b/587/CH12/EX12.6/example12_6.sce
@@ -0,0 +1,28 @@
+clear;
+clc;
+
+//Example12.6[Installing Reflective Films on Windows]
+//Given:-
+A_glazing=40;//[m^2]
+SHGC_wof=0.766,SHGC_wf=0.261;//[kWh/year]
+unit_c_e=0.08;//[$/kWh]
+unit_c_f=0.5;//[$/therm]
+COP=2.5,neta=0.80;
+//Solution:-
+//For the months of June,July,August and Sepetember
+Q_summer=5.31*30+4.31*31+3.93*31+3.28*30;//[kWh/year]
+//For the months oct,Nov,Dec,Jan,Feb,Mar,Apr
+Q_winter=2.80*31+1.84*30+1.54*31+1.86*31+2.66*28+3.43*31+4.00*30;//[kWh/year]
+c_l_d=Q_summer*A_glazing*(SHGC_wof-SHGC_wf);//[kWh/year]
+disp("kWh/year",c_l_d,"The decrease in the annual cooling load is")
+h_l_i=Q_winter*A_glazing*(SHGC_wof-SHGC_wf);//[kWh/year]
+disp("kWh/year",h_l_i,"The increase in annual heating load is")
+d_c_c=c_l_d*(unit_c_e)/COP;//[$/year]
+i_h_c=h_l_i*(unit_c_f/29.31)/neta;//[$/year]
+disp("per year",i_h_c,"and $",d_c_c,"The corresponding decrease in cooling costs and the increase in heating costs are $")
+Cost_s=d_c_c-i_h_c;//[$/year]
+disp("per year",Cost_s,"The net annual cost savings due to the reflective film is $")
+I_cost=20*A_glazing;//[$]
+disp(I_cost,"The implementation Cost of installing films is $")
+pp=I_cost/Cost_s;//[years]
+disp("years",pp,"Payback Period is")